Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Theor Biol ; 561: 111382, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36610694

ABSTRACT

Calcification in photosynthetic scleractinian corals is a complicated process that involves many different biological, chemical, and physical sub-processes that happen within and around the coral tissue. Identifying and quantifying the role of separate processes in vivo or in vitro is difficult or not possible. A computational model can facilitate this research by simulating the sub-processes independently. This study presents a spatio-temporal model of the calcification physiology, which is based on processes that are considered essential for calcification: respiration, photosynthesis, Ca2+-ATPase, carbonic anhydrase. The model is used to test different hypotheses considering ion transport across the calicoblastic cells and Light Enhanced Calcification (LEC). It is also used to quantify the effect of ocean acidification (OA) on the Extracellular Calcifying Medium (ECM) and ATP-consumption of Ca2+-ATPase. It was able to reproduce the experimental data of three separate studies and finds that paracellular transport plays a minor role compared to transcellular transport. In the model, LEC results from increased Ca2+-ATPase activity in combination with increased metabolism. Implementing OA increases the concentration of CO2 throughout the entire tissue, thereby increasing the availability of CO3- in the ECM. As a result, the model finds that calcification becomes more energy-demanding and the calcification rate increases.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Hydrogen-Ion Concentration , Seawater , Calcification, Physiologic/physiology , Photosynthesis , Coral Reefs
2.
PLoS One ; 17(4): e0251833, 2022.
Article in English | MEDLINE | ID: mdl-35421089

ABSTRACT

Phylogenetic profiling in eukaryotes is of continued interest to study and predict the functional relationships between proteins. This interest is likely driven by the increased number of available diverse genomes and computational methods to infer orthologies. The evaluation of phylogenetic profiles has mainly focussed on reference genome selection in prokaryotes. However, it has been proven to be challenging to obtain high prediction accuracies in eukaryotes. As part of our recent comparison of orthology inference methods for eukaryotic genomes, we observed a surprisingly high performance for predicting interacting orthologous groups. This high performance, in turn, prompted the question of what factors influence the success of phylogenetic profiling when applied to eukaryotic genomes. Here we analyse the effect of species, orthologous group and interactome selection on protein interaction prediction using phylogenetic profiles. We select species based on the diversity and quality of the genomes and compare this supervised selection with randomly generated genome subsets. We also analyse the effect on the performance of orthologous groups defined to be in the last eukaryotic common ancestor of eukaryotes to that of orthologous groups that are not. Finally, we consider the effects of reference interactome set filtering and reference interactome species. In agreement with other studies, we find an effect of genome selection based on quality, less of an effect based on genome diversity, but a more notable effect based on the amount of information contained within the genomes. Most importantly, we find it is not merely selecting the correct genomes that is important for high prediction performance. Other choices in meta parameters such as orthologous group selection, the reference species of the interaction set, and the quality of the interaction set have a much larger impact on the performance when predicting protein interactions using phylogenetic profiles. These findings shed light on the differences in reported performance amongst phylogenetic profiles approaches, and reveal on a more fundamental level for which types of protein interactions this method has most promise when applied to eukaryotes.


Subject(s)
Eukaryota , Genome , Eukaryota/genetics , Eukaryotic Cells , Evolution, Molecular , Phylogeny , Prokaryotic Cells
3.
Brief Bioinform ; 22(3)2021 05 20.
Article in English | MEDLINE | ID: mdl-32935832

ABSTRACT

Insights into the evolution of ancestral complexes and pathways are generally achieved through careful and time-intensive manual analysis often using phylogenetic profiles of the constituent proteins. This manual analysis limits the possibility of including more protein-complex components, repeating the analyses for updated genome sets or expanding the analyses to larger scales. Automated orthology inference should allow such large-scale analyses, but substantial differences between orthologous groups generated by different approaches are observed. We evaluate orthology methods for their ability to recapitulate a number of observations that have been made with regard to genome evolution in eukaryotes. Specifically, we investigate phylogenetic profile similarity (co-occurrence of complexes), the last eukaryotic common ancestor's gene content, pervasiveness of gene loss and the overlap with manually determined orthologous groups. Moreover, we compare the inferred orthologies to each other. We find that most orthology methods reconstruct a large last eukaryotic common ancestor, with substantial gene loss, and can predict interacting proteins reasonably well when applying phylogenetic co-occurrence. At the same time, derived orthologous groups show imperfect overlap with manually curated orthologous groups. There is no strong indication of which orthology method performs better than another on individual or all of these aspects. Counterintuitively, despite the orthology methods behaving similarly regarding large-scale evaluation, the obtained orthologous groups differ vastly from one another. Availability and implementation The data and code underlying this article are available in github and/or upon reasonable request to the corresponding author: https://github.com/ESDeutekom/ComparingOrthologies.


Subject(s)
Benchmarking/methods , Eukaryota/genetics , Phylogeny , Proteins/genetics , Proteome/genetics , Databases, Protein , Eukaryota/classification , Evolution, Molecular , Genome/genetics , Genomics/methods , Internet , Proteins/metabolism , Proteome/metabolism , Reproducibility of Results , Software
4.
PLoS Comput Biol ; 15(8): e1007301, 2019 08.
Article in English | MEDLINE | ID: mdl-31461468

ABSTRACT

In recent years it became clear that in eukaryotic genome evolution gene loss is prevalent over gene gain. However, the absence of genes in an annotated genome is not always equivalent to the loss of genes. Due to sequencing issues, or incorrect gene prediction, genes can be falsely inferred as absent. This implies that loss estimates are overestimated and, more generally, that falsely inferred absences impact genomic comparative studies. However, reliable estimates of how prevalent this issue is are lacking. Here we quantified the impact of gene prediction on gene loss estimates in eukaryotes by analysing 209 phylogenetically diverse eukaryotic organisms and comparing their predicted proteomes to that of their respective six-frame translated genomes. We observe that 4.61% of domains per species were falsely inferred to be absent for Pfam domains predicted to have been present in the last eukaryotic common ancestor. Between phylogenetically different categories this estimate varies substantially: for clade-specific loss (ancestral loss) we found 1.30% and for species-specific loss 16.88% to be falsely inferred as absent. For BUSCO 1-to-1 orthologous families, 18.30% were falsely inferred to be absent. Finally, we showed that falsely inferred absences indeed impact loss estimates, with the number of losses decreasing by 11.78%. Our work strengthens the increasing number of studies showing that gene loss is an important factor in eukaryotic genome evolution. However, while we demonstrate that on average inferring gene absences from predicted proteomes is reliable, caution is warranted when inferring species-specific absences.


Subject(s)
Eukaryota/genetics , Evolution, Molecular , Animals , Computational Biology , Gene Deletion , Gene Duplication , Genome , Humans , Phylogeny , Protein Domains/genetics , Proteome , Species Specificity
5.
Sci Adv ; 4(6): eaar8028, 2018 06.
Article in English | MEDLINE | ID: mdl-29881778

ABSTRACT

There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change.


Subject(s)
Acclimatization , Anthozoa/genetics , Coral Reefs , Epigenesis, Genetic , Hydrogen-Ion Concentration , Phenotype , Animals , Anthozoa/metabolism , Carbonates/metabolism , Climate Change , DNA Methylation , Mitogen-Activated Protein Kinases/metabolism , Seawater , Stress, Physiological , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...