Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(13): 37607-37621, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36572773

ABSTRACT

Excessive point and non-point nutrient loadings accompanied with elevated temperatures have increased the prevalence of harmful algal bloom (HAB). HABs pose significant environmental and public health concerns, particularly for inland freshwater systems. In this study, the eutrophication and HAB dynamics in the Qaraoun Reservoir, a hypereutrophic deep monomictic reservoir suffering from poor water quality, were assessed. The reservoir was mostly phosphorus limited, and large algal particulates dominated light attenuation in the water column. During bloom events, surface chlorophyll-a concentrations increased up to 961.3 µg/L, while surface concentrations of ammonia and ortho-phosphate were rapidly depleted; surface dissolved oxygen reached supersaturation levels and surface pH levels were up to 3 units higher than those measured in the hypolimnion. Meanwhile, measured Microcystin-LR toxin concentrations in the reservoir exceeded the World Health Organization 1 µg/L provisional guideline 45% of the times. Yet, the results showed that most of the toxins were intra-cellular, suggesting that they decayed rapidly when released into the reservoir. Results from a random forests ensemble model indicated that tracking the changes in surface dissolved oxygen levels, ammonium, ortho-phosphate, and pH can be an effective program towards predicting the reservoir's trophic state and algae blooms.


Subject(s)
Eutrophication , Harmful Algal Bloom , Water Quality , Chlorophyll A , Fresh Water , Phosphates , Phosphorus/analysis
2.
Sci Total Environ ; 826: 153971, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35183627

ABSTRACT

Canada has more lakes than any other country, making comprehensive monitoring a huge challenge. As more and more satellite data become readily available, and as faster data processing systems make massive satellite data operations possible, new opportunities exist to use remote sensing to develop comprehensive assessments of water quality at very large spatial scales. In this study, we use a published empirical algorithm to estimate Secchi depth from Landsat 8 reflectance data in order to estimate water clarity in lakes across southern Canada. Combined with ancillary information on lake morphological, hydrological, and watershed geological and landuse characteristics, we were able to assess broad spatial patterns in water clarity for the first time. Ecological zones, underlying geological substrate, and lake depth had particularly strong influences on clarity across the whole country. Lakes in western mountain ecozones had significantly clearer waters than those in the prairies and plains, while lakes in sedimentary rock formations tended to have lower clarity than lakes in intrusive rock. Deep lakes were significantly clearer than shallow lakes over most of the country. Water clarity was also significantly influenced by human impact (urbanization, agriculture, and industry) in the watershed, with most lakes in high impact areas having low clarity or very low clarity. Finally, we used in situ measured data to help interpret the underlying optical water column constituents influencing clarity across Canada, and found that chlorophyll-a, total suspended solids, and color dissolved organic matter all had strong but varying underlying effects on water clarity across different ecozones. This research provides an important step towards further research on the relationship between water column optical properties and the health and vulnerability status of lakes across the country.


Subject(s)
Lakes , Remote Sensing Technology , Canada , Environmental Monitoring , Humans , Lakes/chemistry , Water Quality
3.
Environ Monit Assess ; 191(1): 41, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30593606

ABSTRACT

In situ monitoring of freshwater systems is often constrained by cost and accessibility, particularly in developing countries and in remote areas. Satellite remote sensing is therefore increasingly being integrated with existing in situ water quality monitoring programs. In this study, we use the Landsat TM/ETM+ image record collected between 1984 and 2015 to track temporal changes in trophic status, chlorophyll-a levels, algal bloom incidences, water clarity, water temperature, and reservoir water volume in a poorly monitored hypereutrophic semi-arid reservoir. Historical reservoir water quality data are inferred from calibrated Landsat-based empirical algorithms. The results show that, although the reservoir has existed in a eutrophic to hypereutrophic state over the past 30 years, its water quality has significantly deteriorated in the most recent decade. Mean summer chlorophyll-a concentrations were found to have increased by around 163% between 1984 and 2015, while water clarity dropped by more than 58% over the same period. Statistically significant changes in surface water temperatures were also apparent for the month of August, with a cumulative increase of 1.24 °C over the 31-year study period. The rise in temperature appears to correlate with the incidence of Microcystis blooms observed in the reservoir over the past decade. On the other hand, the water volume in the reservoir was found to have been fairly stable over time, likely as a result of adaptive reservoir management. This study demonstrates the strength of using Landsat data to hindcast and quantify changes in water quality and quantity in poorly monitored freshwater systems.


Subject(s)
Chlorophyll A/analysis , Environmental Monitoring/methods , Eutrophication , Fresh Water/chemistry , Microcystis/growth & development , Temperature , Water Quality , Chlorophyll/analogs & derivatives , Chlorophyll/analysis , Microalgae/growth & development , Seasons , Water/chemistry
4.
Environ Monit Assess ; 190(3): 141, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29450661

ABSTRACT

The launch of the Landsat 8 in February 2013 extended the life of the Landsat program to over 40 years, increasing the value of using Landsat to monitor long-term changes in the water quality of small lakes and reservoirs, particularly in poorly monitored freshwater systems. Landsat-based water quality hindcasting often incorporate several Landsat sensors in an effort to increase the temporal range of observations; yet the transferability of water quality algorithms across sensors remains poorly examined. In this study, several empirical algorithms were developed to quantify chlorophyll-a, total suspended matter (TSM), and Secchi disk depth (SDD) from surface reflectance measured by Landsat 7 ETM+ and Landsat 8 OLI sensors. Sensor-specific multiple linear regression models were developed by correlating in situ water quality measurements collected from a semi-arid eutrophic reservoir with band ratios from Landsat ETM+ and OLI sensors, along with ancillary data (water temperature and seasonality) representing ecological patterns in algae growth. Overall, ETM+-based models outperformed (adjusted R2 chlorophyll-a = 0.70, TSM = 0.81, SDD = 0.81) their OLI counterparts (adjusted R2 chlorophyll-a = 0.50, TSM = 0.58, SDD = 0.63). Inter-sensor differences were most apparent for algorithms utilizing the Blue spectral band. The inclusion of water temperature and seasonality improved the power of TSM and SDD models.


Subject(s)
Environmental Monitoring/methods , Eutrophication , Fresh Water/chemistry , Remote Sensing Technology , Water Pollution/analysis , Water Quality , Algorithms , Chlorophyll/analysis , Chlorophyll A , Lebanon , Pilot Projects , Regression Analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...