Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 22849, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819551

ABSTRACT

The ammonia-oxidizing thaumarchaeal 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle is one of the most energy-efficient CO2 fixation cycles discovered thus far. The protein encoded by Nmar_1308 (from Nitrosopumilus maritimus SCM1) is a promiscuous enzyme that catalyzes two essential reactions within the thaumarchaeal 3HP/4HB cycle, functioning as both a crotonyl-CoA hydratase (CCAH) and 3-hydroxypropionyl-CoA dehydratase (3HPD). In performing both hydratase and dehydratase activities, Nmar_1308 reduces the total number of enzymes necessary for CO2 fixation in Thaumarchaeota, reducing the overall cost for biosynthesis. Here, we present the first high-resolution crystal structure of this bifunctional enzyme with key catalytic residues in the thaumarchaeal 3HP/4HB pathway.


Subject(s)
Acyl Coenzyme A/metabolism , Archaea/enzymology , Archaeal Proteins/metabolism , Carbon Dioxide/metabolism , Enoyl-CoA Hydratase/metabolism , Archaea/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Catalysis , Crystallography, X-Ray , Enoyl-CoA Hydratase/chemistry , Enoyl-CoA Hydratase/genetics , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Substrate Specificity
2.
ISME J ; 14(3): 659-675, 2020 03.
Article in English | MEDLINE | ID: mdl-31754206

ABSTRACT

Assigning a functional role to a microorganism has historically relied on cultivation of isolates or detection of environmental genome-based biomarkers using a posteriori knowledge of function. However, the emerging field of function-driven single-cell genomics aims to expand this paradigm by identifying and capturing individual microbes based on their in situ functions or traits. To identify and characterize yet uncultivated microbial taxa involved in cellulose degradation, we developed and benchmarked a function-driven single-cell screen, which we applied to a microbial community inhabiting the Great Boiling Spring (GBS) Geothermal Field, northwest Nevada. Our approach involved recruiting microbes to fluorescently labeled cellulose particles, and then isolating single microbe-bound particles via fluorescence-activated cell sorting. The microbial community profiles prior to sorting were determined via bulk sample 16S rRNA gene amplicon sequencing. The flow-sorted cellulose-bound microbes were subjected to whole genome amplification and shotgun sequencing, followed by phylogenetic placement. Next, putative cellulase genes were identified, expressed and tested for activity against derivatives of cellulose and xylose. Alongside typical cellulose degraders, including members of the Actinobacteria, Bacteroidetes, and Chloroflexi, we found divergent cellulases encoded in the genome of a recently described candidate phylum from the rare biosphere, Goldbacteria, and validated their cellulase activity. As this genome represents a species-level organism with novel and phylogenetically distinct cellulolytic activity, we propose the name Candidatus 'Cellulosimonas argentiregionis'. We expect that this function-driven single-cell approach can be extended to a broad range of substrates, linking microbial taxonomy directly to in situ function.


Subject(s)
Bacteria/metabolism , Cellulose/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cellulase/genetics , Cellulase/metabolism , Environmental Microbiology , Genome, Bacterial , Genomics , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics
3.
J Biol Chem ; 290(19): 11819-32, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25752603

ABSTRACT

The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-ß-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 ß-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties.


Subject(s)
Bacterial Proteins/chemistry , Glucans/chemistry , Glycoside Hydrolases/chemistry , Streptomyces/enzymology , Catalysis , Catalytic Domain , Computational Biology , Crystallography, X-Ray , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Models, Molecular , Mutagenesis , Mutation , Phanerochaete/enzymology , Phylogeny , Polysaccharides/chemistry , Protein Binding , Water/chemistry
4.
ACS Chem Biol ; 9(7): 1470-9, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24819174

ABSTRACT

Glycoside hydrolases (GHs) are critical to cycling of plant biomass in the environment, digestion of complex polysaccharides by the human gut microbiome, and industrial activities such as deployment of cellulosic biofuels. High-throughput sequencing methods show tremendous sequence diversity among GHs, yet relatively few examples from the over 150,000 unique domain arrangements containing GHs have been functionally characterized. Here, we show how cell-free expression, bioconjugate chemistry, and surface-based mass spectrometry can be used to study glycoside hydrolase reactions with plant biomass. Detection of soluble products is achieved by coupling a unique chemical probe to the reducing end of oligosaccharides in a stable oxime linkage, while the use of (13)C-labeled monosaccharide standards (xylose and glucose) allows quantitation of the derivatized glycans. We apply this oxime-based nanostructure-initiator mass spectrometry (NIMS) method to characterize the functional diversity of GHs secreted by Clostridium thermocellum, a model cellulolytic organism. New reaction specificities are identified, and differences in rates and yields of individual enzymes are demonstrated in reactions with biomass substrates. Numerical analyses of time series data suggests that synergistic combinations of mono- and multifunctional GHs can decrease the complexity of enzymes needed for the hydrolysis of plant biomass during the production of biofuels.


Subject(s)
Cellulose/metabolism , Clostridium thermocellum/enzymology , Glycoside Hydrolases/metabolism , Mass Spectrometry/methods , Nanostructures/chemistry , Oximes/chemistry , Biomass , Clostridium thermocellum/chemistry , Clostridium thermocellum/metabolism , Glycoside Hydrolases/chemistry , Hydrolysis , Kinetics , Models, Molecular , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...