Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Atmos ; 125(22): e2020JD032794, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33777605

ABSTRACT

TanSat is the 1st Chinese carbon dioxide (CO2) measurement satellite, launched in 2016. In this study, the University of Leicester Full Physics (UoL-FP) algorithm is implemented for TanSat nadir mode XCO2 retrievals. We develop a spectrum correction method to reduce the retrieval errors by the online fitting of an 8th order Fourier series. The spectrum-correction model and its a priori parameters are developed by analyzing the solar calibration measurement. This correction provides a significant improvement to the O2 A band retrieval. Accordingly, we extend the previous TanSat single CO2 weak band retrieval to a combined O2 A and CO2 weak band retrieval. A Genetic Algorithm (GA) has been applied to determine the threshold values of post-screening filters. In total, 18.3% of the retrieved data is identified as high quality compared to the original measurements. The same quality control parameters have been used in a footprint independent multiple linear regression bias correction due to the strong correlation with the XCO2 retrieval error. Twenty sites of the Total Column Carbon Observing Network (TCCON) have been selected to validate our new approach for the TanSat XCO2 retrieval. We show that our new approach produces a significant improvement on the XCO2 retrieval accuracy and precision when compared to TCCON with an average bias and RMSE of -0.08 ppm and 1.47 ppm, respectively. The methods used in this study can help to improve the XCO2 retrieval from TanSat and subsequently the Level-2 data production, and hence will be applied in the TanSat operational XCO2 processing.

2.
Atmos Chem Phys ; 11(5): 1989-2013, 2011 Mar.
Article in English | MEDLINE | ID: mdl-33758586

ABSTRACT

We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ∼1200 and ∼1400Gmolyr-1, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...