Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 567(7746): 123-126, 2019 03.
Article in English | MEDLINE | ID: mdl-30814733

ABSTRACT

Cannabis sativa L. has been cultivated and used around the globe for its medicinal properties for millennia1. Some cannabinoids, the hallmark constituents of Cannabis, and their analogues have been investigated extensively for their potential medical applications2. Certain cannabinoid formulations have been approved as prescription drugs in several countries for the treatment of a range of human ailments3. However, the study and medicinal use of cannabinoids has been hampered by the legal scheduling of Cannabis, the low in planta abundances of nearly all of the dozens of known cannabinoids4, and their structural complexity, which limits bulk chemical synthesis. Here we report the complete biosynthesis of the major cannabinoids cannabigerolic acid, Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid and cannabidivarinic acid in Saccharomyces cerevisiae, from the simple sugar galactose. To accomplish this, we engineered the native mevalonate pathway to provide a high flux of geranyl pyrophosphate and introduced a heterologous, multi-organism-derived hexanoyl-CoA biosynthetic pathway5. We also introduced the Cannabis genes that encode the enzymes involved in the biosynthesis of olivetolic acid6, as well as the gene for a previously undiscovered enzyme with geranylpyrophosphate:olivetolate geranyltransferase activity and the genes for corresponding cannabinoid synthases7,8. Furthermore, we established a biosynthetic approach that harnessed the promiscuity of several pathway genes to produce cannabinoid analogues. Feeding different fatty acids to our engineered strains yielded cannabinoid analogues with modifications in the part of the molecule that is known to alter receptor binding affinity and potency9. We also demonstrated that our biological system could be complemented by simple synthetic chemistry to further expand the accessible chemical space. Our work presents a platform for the production of natural and unnatural cannabinoids that will allow for more rigorous study of these compounds and could be used in the development of treatments for a variety of human health problems.


Subject(s)
Biosynthetic Pathways , Cannabinoids/biosynthesis , Cannabinoids/chemistry , Cannabis/chemistry , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Acyl Coenzyme A/biosynthesis , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Benzoates/metabolism , Biosynthetic Pathways/genetics , Cannabinoids/metabolism , Cannabis/genetics , Dronabinol/analogs & derivatives , Dronabinol/metabolism , Fermentation , Galactose/metabolism , Mevalonic Acid/metabolism , Polyisoprenyl Phosphates/biosynthesis , Polyisoprenyl Phosphates/metabolism , Saccharomyces cerevisiae/genetics , Salicylates/metabolism
3.
Metab Eng ; 47: 94-101, 2018 05.
Article in English | MEDLINE | ID: mdl-29545148

ABSTRACT

Valeriana officinalis (Valerian) root extracts have been used by European and Asian cultures for millennia for their anxiolytic and sedative properties. However, the efficacy of these extracts suffers from variable yields and composition, making these extracts a prime candidate for microbial production. Recently, valerenic acid, a C15 sesquiterpenoid, was identified as the active compound that modulates the GABAA channel. Although the first committed step, valerena-4,7(11)-diene synthase, has been identified and described, the complete valerenic acid biosynthetic pathway remains to be elucidated. Sequence homology and tissue-specific expression profiles of V. officinalis putative P450s led to the discovery of a V. officinalis valerena-4,7(11)-diene oxidase, VoCYP71DJ1, which required coexpression with a V. officinalis alcohol dehydrogenase and aldehyde dehydrogenase to complete valerenic acid biosynthesis in yeast. Further, we demonstrated the stable integration of all pathway enzymes in yeast, resulting in the production of 140 mg/L of valerena-4,7(11)-diene and 4 mg/L of valerenic acid in milliliter plates. These findings showcase Saccharomyces cerevisiae's potential as an expression platform for facilitating multiply-oxidized medicinal terpenoid pathway discovery, possibly paving the way for scale up and FDA approval of valerenic acid and other active compounds from plant-derived herbal medicines.


Subject(s)
Hypnotics and Sedatives/metabolism , Indenes/metabolism , Saccharomyces cerevisiae , Sesquiterpenes/metabolism , Alcohol Dehydrogenase/biosynthesis , Alcohol Dehydrogenase/genetics , Aldehyde Dehydrogenase/biosynthesis , Aldehyde Dehydrogenase/genetics , Cytochrome P-450 Enzyme System/biosynthesis , Cytochrome P-450 Enzyme System/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Valerian/enzymology , Valerian/genetics
4.
Metab Eng ; 45: 142-148, 2018 01.
Article in English | MEDLINE | ID: mdl-29247866

ABSTRACT

Euphorbiaceae are an important source of medically important diterpenoids, such as the anticancer drug ingenol-3-angelate and the antiretroviral drug prostratin. However, extraction from the genetically intractable natural producers is often limited by the small quantities produced, while the organic synthesis of terpene-derived drugs is challenging and similarly low-yielding. While transplanting the biosynthetic pathway into a heterologous host has proven successful for some drugs, it has been largely unsuccessful for diterpenoids due to their elaborate biosynthetic pathways and lack of genetic resources and tools for gene discovery. We engineered casbene precursor production in S. cerevisiae, verified the ability of six Euphorbia lathyris and Jatropha curcas cytochrome P450s to oxidize casbene, and optimized the expression of these P450s and an alcohol dehydrogenase to generate jolkinol C, achieving ~800mg/L of jolkinol C and over 1g/L total oxidized casbanes in millititer plates, the highest titer of oxidized diterpenes in yeast reported to date. This strain enables the semisynthesis of biologically active jolkinol C derivatives and will be an important tool in the elucidation of the biosynthetic pathways for ingenanes, tiglianes, and lathyranes. These findings demonstrate the ability of S. cerevisiae to produce oxidized drug precursors in quantities that are sufficient for drug development and pathway discovery.


Subject(s)
Cytochrome P-450 Enzyme System , Diterpenes/metabolism , Euphorbia/genetics , Jatropha/genetics , Microorganisms, Genetically-Modified , Plant Proteins , Saccharomyces cerevisiae , Cytochrome P-450 Enzyme System/biosynthesis , Cytochrome P-450 Enzyme System/genetics , Euphorbia/enzymology , Jatropha/enzymology , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
5.
Metab Eng ; 42: 115-125, 2017 07.
Article in English | MEDLINE | ID: mdl-28606738

ABSTRACT

Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four heterologous FARs, finding highest activity and endoplasmic reticulum localization from a Mus musculus FAR. After screening an additional twenty-one single-gene edits, we identified increasing FAR expression; deleting competing reactions encoded by DGA1, HFD1, and ADH6; overexpressing a mutant acetyl-CoA carboxylase; limiting NADPH and carbon usage by the glutamate dehydrogenase encoded by GDH1; and overexpressing the Δ9-desaturase encoded by OLE1 as successful strategies to improve titer. Our final strain produced 1.2g/L fatty alcohols in shake flasks, and 6.0g/L in fed-batch fermentation, corresponding to ~ 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7g/L in shake flasks. Altogether, our work represents progress towards efficient and renewable microbial production of fatty acid-derived products.


Subject(s)
Fatty Alcohols/metabolism , Lignin/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Gene Deletion , Mice , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...