Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Physiol Genomics ; 56(5): 397-408, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497119

ABSTRACT

Feed efficiency is a trait of interest in pigs as it contributes to lowering the ecological and economical costs of pig production. A divergent genetic selection experiment from a Large White pig population was performed for 10 generations, leading to pig lines with relatively low- (LRFI) and high- (HRFI) residual feed intake (RFI). Feeding behavior and metabolic differences have been previously reported between the two lines. We hypothesized that part of these differences could be related to differential sensing and absorption of nutrients in the proximal intestine. We investigated the duodenum transcriptome and DNA methylation profiles comparing overnight fasting with ad libitum feeding in LRFI and HRFI pigs (n = 24). We identified 1,106 differentially expressed genes between the two lines, notably affecting pathways of the transmembrane transport activity and related to mitosis or chromosome separation. The LRFI line showed a greater transcriptomic response to feed intake than the HRFI line. Feed intake affected genes from both anabolic and catabolic pathways in the pig duodenum, such as rRNA production and autophagy. Several nutrient transporter and tight junction genes were differentially expressed between lines and/or by short-term feed intake. We also identified 409 differentially methylated regions in the duodenum mucosa between the two lines, while this epigenetic mark was less affected by feeding. Our findings highlighted that the genetic selection for feed efficiency in pigs changed the transcriptome profiles of the duodenum, and notably its response to feed intake, suggesting key roles for this proximal gut segment in mechanisms underlying feed efficiency.NEW & NOTEWORTHY The duodenum is a key organ for the hunger/satiety loop and nutrient sensing. We investigated how the duodenum transcriptome and DNA methylation profiles are affected by feed intakes in pigs. We observed thousands of changes in gene expression levels between overnight-fasted and fed pigs in high-feed efficiency pig lines, but almost none in the related low-feed efficiency pig line.


Subject(s)
DNA Methylation , Transcriptome , Swine/genetics , Animals , Transcriptome/genetics , DNA Methylation/genetics , Eating/genetics , Gene Expression Profiling , Duodenum , Animal Feed
2.
FASEB J ; 37(10): e23149, 2023 10.
Article in English | MEDLINE | ID: mdl-37671857

ABSTRACT

The gut microbiota plays a key role in the postnatal development of the intestinal epithelium. However, the bacterial members of the primocolonizing microbiota driving these effects are not fully identified and the mechanisms underlying their long-term influence on epithelial homeostasis remain poorly described. Here, we used a model of newborn piglets treated during the first week of life with the antibiotic colistin in order to deplete specific gram-negative bacteria that are transiently dominant in the neonatal gut microbiota. Colistin depleted Proteobacteria and Fusobacteriota from the neonatal colon microbiota, reduced the bacterial predicted capacity to synthetize lipopolysaccharide (LPS), and increased the concentration of succinate in the colon. The colistin-induced disruption of the primocolonizing microbiota was associated with altered gene expression in the colon epithelium including a reduction of toll-like receptor 4 (TLR4) and lysozyme (LYZ). Our data obtained in porcine colonic organoid cell monolayers suggested that these effects were not driven by the variation of succinate or LPS levels nor by a direct effect of colistin on epithelial cells. The disruption of the primocolonizing microbiota imprinted colon epithelial stem cells since the expression of TLR4 and LYZ remained lower in organoids derived from colistin-treated piglet colonic crypts after several passages when compared to control piglets. Finally, the stable imprinting of LYZ in colon organoids was independent of the H3K4me3 level in its transcription start site. Altogether, our results show that disruption of the primocolonizing gut microbiota alters epithelial innate immunity in the colon and imprints stem cells, which could have long-term consequences for gut health.


Subject(s)
Microbiota , Animals , Swine , Toll-Like Receptor 4 , Colistin , Lipopolysaccharides , Stem Cells , Succinates , Succinic Acid , Colon , Homeostasis
3.
Front Cell Dev Biol ; 10: 983031, 2022.
Article in English | MEDLINE | ID: mdl-36105361

ABSTRACT

Intestinal organoids are innovative in vitro tools to study the digestive epithelium. The objective of this study was to generate jejunum and colon organoids from suckling and weaned piglets in order to determine the extent to which organoids retain a location-specific and a developmental stage-specific phenotype. Organoids were studied at three time points by gene expression profiling for comparison with the transcriptomic patterns observed in crypts in vivo. In addition, the gut microbiota and the metabolome were analyzed to characterize the luminal environment of epithelial cells at the origin of organoids. The location-specific expression of 60 genes differentially expressed between jejunum and colon crypts from suckling piglets was partially retained (48%) in the derived organoids at all time point. The regional expression of these genes was independent of luminal signals since the major differences in microbiota and metabolome observed in vivo between the jejunum and the colon were not reproduced in vitro. In contrast, the regional expression of other genes was erased in organoids. Moreover, the developmental stage-specific expression of 30 genes differentially expressed between the jejunum crypts of suckling and weaned piglets was not stably retained in the derived organoids. Differentiation of organoids was necessary to observe the regional expression of certain genes while it was not sufficient to reproduce developmental stage-specific expression patterns. In conclusion, piglet intestinal organoids retained a location-specific phenotype while the characteristics of developmental stage were erased in vitro. Reproducing more closely the luminal environment might help to increase the physiological relevance of intestinal organoids.

4.
Mol Omics ; 17(5): 692-705, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34291238

ABSTRACT

Advances in sequencing technologies have enabled exploration of epigenetic and transcriptional profiles at a genome-wide level. The epigenetic and transcriptional landscapes are now available in hundreds of mammalian cell and tissue contexts. Many studies have performed multi-omics analyses using these datasets to enhance our understanding of relationships between epigenetic modifications and transcription regulation. Nevertheless, most studies so far have focused on the promoters/enhancers and transcription start sites, and other features of transcription control including exons, introns and transcription termination remain underexplored. We investigated the interplay between epigenetic modifications and diverse transcription features using the data generated by the Roadmap Epigenomics project. A comprehensive analysis of histone modifications, DNA methylation, and RNA-seq data of thirty-three human cell lines and tissue types allowed us to confirm the generality of previously described relationships, as well as to generate new hypotheses about the interplay between epigenetic modifications and transcription features. Importantly, our analysis included previously under-explored features of transcription control, namely, transcription termination sites, exon-intron boundaries, and the exon inclusion ratio. We have made the analyses freely available to the scientific community at joshiapps.cbu.uib.no/perepigenomics_app/ for easy exploration, validation and hypothesis generation.


Subject(s)
Epigenesis, Genetic , Epigenomics , Animals , DNA Methylation/genetics , Gene Expression Regulation , Humans , Transcription, Genetic
5.
Front Genet ; 10: 1327, 2019.
Article in English | MEDLINE | ID: mdl-32153623

ABSTRACT

Chronic otitis media with effusion (COME) is the most common cause of childhood hearing loss in the developed world. Underlying pathophysiology is not well understood, and in particular the factors that lead to the transition from acute to chronic inflammation. Here we present the first genome-wide transcript analysis of white blood cells in the effusion of children with COME. Analysis of microarray data for enriched pathways reveals upregulation of hypoxia pathways, which is confirmed using real-time PCR and determining VEGF protein titres. Other pathways upregulated in both mucoid and serous effusions include Toll-like receptor signaling, complement, and RANK-RANKL. Cytology reveals neutrophils and macrophages predominated in both serous and mucoid effusions, however, serous samples had higher lymphocyte and eosinophil differential counts, while mucoid samples had higher neutrophil differential counts. Transcript analysis indicates serous fluids have CD4+ and CD8+ T-lymphocyte, and NK cell signatures. Overall, our findings suggest that inflammation and hypoxia pathways are important in the pathology of COME, and targets for potential therapeutic intervention, and that mucoid and serous COME may represent different immunological responses.

6.
Int J Mol Sci ; 19(11)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30445760

ABSTRACT

Transcription control plays a crucial role in establishing a unique gene expression signature for each of the hundreds of mammalian cell types. Though gene expression data have been widely used to infer cellular regulatory networks, existing methods mainly infer correlations rather than causality. We developed statistical models and likelihood-ratio tests to infer causal gene regulatory networks using enhancer RNA (eRNA) expression information as a causal anchor and applied the framework to eRNA and transcript expression data from the FANTOM Consortium. Predicted causal targets of transcription factors (TFs) in mouse embryonic stem cells, macrophages and erythroblastic leukaemia overlapped significantly with experimentally-validated targets from ChIP-seq and perturbation data. We further improved the model by taking into account that some TFs might act in a quantitative, dosage-dependent manner, whereas others might act predominantly in a binary on/off fashion. We predicted TF targets from concerted variation of eRNA and TF and target promoter expression levels within a single cell type, as well as across multiple cell types. Importantly, TFs with high-confidence predictions were largely different between these two analyses, demonstrating that variability within a cell type is highly relevant for target prediction of cell type-specific factors. Finally, we generated a compendium of high-confidence TF targets across diverse human cell and tissue types.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Regulatory Networks/genetics , Animals , Databases, Genetic , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Humans , Mice , Models, Genetic , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
7.
BMC Bioinformatics ; 19(Suppl 14): 409, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30453943

ABSTRACT

BACKGROUND: Transcription regulation is a major controller of gene expression dynamics during development and disease, where transcription factors (TFs) modulate expression of genes through direct or indirect DNA interaction. ChIP sequencing has become the most widely used technique to get a genome wide view of TF occupancy in a cell type of interest, mainly due to established standard protocols and a rapid decrease in the cost of sequencing. The number of available ChIP sequencing data sets in public domain is therefore ever increasing, including data generated by individual labs together with consortia such as the ENCODE project. RESULTS: A total of 1735 ChIP-sequencing datasets in mouse and human cell types and tissues were used to perform bioinformatic analyses to unravel diverse features of transcription control. 1- We used the Heat*seq webtool to investigate global relations across the ChIP-seq samples. 2- We demonstrated that factors have a specific genomic location preferences that are, for most factors, conserved across species. 3- Promoter proximal binding of factors was more conserved across cell types while the distal binding sites are more cell type specific. 4- We identified combinations of factors preferentially acting together in a cellular context. 5- Finally, by integrating the data with disease-associated gene loci from GWAS studies, we highlight the value of this data to associate novel regulators to disease. CONCLUSION: In summary, we demonstrate how ChIP sequencing data integration and analysis is powerful to get new insights into mammalian transcription control and demonstrate the utility of various bioinformatic tools to generate novel testable hypothesis using this public resource.


Subject(s)
Chromatin Immunoprecipitation/methods , Data Analysis , Mammals/genetics , Transcription, Genetic , Animals , Base Sequence , Gene Expression Regulation , Genetic Loci , Genetic Predisposition to Disease , Genome , Humans , Mice , Nucleotide Motifs/genetics , Promoter Regions, Genetic , Sequence Analysis, DNA , Transcription Factors/metabolism , Transcription Initiation Site
8.
BMC Dev Biol ; 18(1): 2, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29458328

ABSTRACT

BACKGROUND: Mammalian embryonic stem cells display a unique epigenetic and transcriptional state to facilitate pluripotency by maintaining lineage-specification genes in a poised state. Two epigenetic and transcription processes involved in maintaining poised state are bivalent chromatin, characterized by the simultaneous presence of activating and repressive histone methylation marks, and RNA polymerase II (RNAPII) promoter proximal pausing. However, the dynamics of histone modifications and RNAPII at promoters in diverse cellular contexts remains underexplored. RESULTS: We collected genome wide data for bivalent chromatin marks H3K4me3 and H3K27me3, and RNAPII (8WG16) occupancy together with expression profiling in eight different cell types, including ESCs, in mouse. The epigenetic and transcription profiles at promoters grouped in over thirty clusters with distinct functional identities and transcription control. CONCLUSION: The clustering analysis identified distinct bivalent clusters where genes in one cluster retained bivalency across cell types while in the other were mostly cell type specific, but neither showed a high RNAPII pausing. We noted that RNAPII pausing is more associated with active genes than bivalent genes in a cell type, and was globally reduced in differentiated cell types compared to multipotent.


Subject(s)
Cell Differentiation/genetics , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Amino Acid Motifs , Animals , Base Sequence , Chromatin/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation , Histones/metabolism , Mice , Protein Binding
9.
Comput Struct Biotechnol J ; 15: 425-432, 2017.
Article in English | MEDLINE | ID: mdl-29187960

ABSTRACT

Functional annotation transfer across multi-gene family orthologs can lead to functional misannotations. We hypothesised that co-expression network will help predict functional orthologs amongst complex homologous gene families. To explore the use of transcriptomic data available in public domain to identify functionally equivalent ones from all predicted orthologs, we collected genome wide expression data in mouse and rat liver from over 1500 experiments with varied treatments. We used a hyper-graph clustering method to identify clusters of orthologous genes co-expressed in both mouse and rat. We validated these clusters by analysing expression profiles in each species separately, and demonstrating a high overlap. We then focused on genes in 18 homology groups with one-to-many or many-to-many relationships between two species, to discriminate between functionally equivalent and non-equivalent orthologs. Finally, we further applied our method by collecting heart transcriptomic data (over 1400 experiments) in rat and mouse to validate the method in an independent tissue.

10.
Int J Biochem Cell Biol ; 90: 161-166, 2017 09.
Article in English | MEDLINE | ID: mdl-28716546

ABSTRACT

Single cell transcriptomics is becoming a common technique to unravel new biological phenomena whose functional significance can only be understood in the light of differences in gene expression between single cells. The technology is still in its early days and therefore suffers from many technical challenges. This review discusses the continuous effort to identify and systematically characterise various sources of technical variability in single cell expression data and the need to further develop experimental and computational tools and resources to help deal with it.


Subject(s)
Gene Expression Profiling/methods , Single-Cell Analysis/methods , Animals , Humans
11.
Bioinformatics ; 32(21): 3354-3356, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27378302

ABSTRACT

Better protocols and decreasing costs have made high-throughput sequencing experiments now accessible even to small experimental laboratories. However, comparing one or few experiments generated by an individual lab to the vast amount of relevant data freely available in the public domain might be limited due to lack of bioinformatics expertise. Though several tools, including genome browsers, allow such comparison at a single gene level, they do not provide a genome-wide view. We developed Heat*seq, a web-tool that allows genome scale comparison of high throughput experiments chromatin immuno-precipitation followed by sequencing, RNA-sequencing and Cap Analysis of Gene Expression) provided by a user, to the data in the public domain. Heat*seq currently contains over 12 000 experiments across diverse tissues and cell types in human, mouse and drosophila. Heat*seq displays interactive correlation heatmaps, with an ability to dynamically subset datasets to contextualize user experiments. High quality figures and tables are produced and can be downloaded in multiple formats. AVAILABILITY AND IMPLEMENTATION: Web application: http://www.heatstarseq.roslin.ed.ac.uk/ Source code: https://github.com/gdevailly CONTACT: Guillaume.Devailly@roslin.ed.ac.uk or Anagha.Joshi@roslin.ed.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Sequence Analysis, RNA , Software , Animals , Chromatin Immunoprecipitation , Drosophila , High-Throughput Nucleotide Sequencing , Humans , Mice
12.
EMBO Mol Med ; 8(8): 863-77, 2016 08.
Article in English | MEDLINE | ID: mdl-27378792

ABSTRACT

In a number of human cancers, NTN1 upregulation inhibits apoptosis induced by its so-called dependence receptors DCC and UNC5H, thus promoting tumor progression. In other cancers however, the selective inhibition of this dependence receptor death pathway relies on the silencing of pro-apoptotic effector proteins. We show here that a substantial fraction of human breast tumors exhibits simultaneous DNA methylation-dependent loss of expression of NTN1 and of DAPK1, a serine threonine kinase known to transduce the netrin-1 dependence receptor pro-apoptotic pathway. The inhibition of DNA methylation by drugs such as decitabine restores the expression of both NTN1 and DAPK1 in netrin-1-low cancer cells. Furthermore, a combination of decitabine with NTN1 silencing strategies or with an anti-netrin-1 neutralizing antibody potentiates tumor cell death and efficiently blocks tumor growth in different animal models. Thus, combining DNA methylation inhibitors with netrin-1 neutralizing agents may be a valuable strategy for combating cancer.


Subject(s)
Breast Neoplasms/pathology , DNA Methylation , Down-Regulation , Nerve Growth Factors/biosynthesis , Tumor Suppressor Proteins/biosynthesis , Cell Death/drug effects , Cell Line, Tumor , Death-Associated Protein Kinases/biosynthesis , Humans , Netrin-1
14.
Comput Biol Chem ; 63: 52-61, 2016 08.
Article in English | MEDLINE | ID: mdl-26951854

ABSTRACT

BACKGROUND: Gene expression heterogeneity contributes to development as well as disease progression. Due to technological limitations, most studies to date have focused on differences in mean expression across experimental conditions, rather than differences in gene expression variance. The advent of single cell RNA sequencing has now made it feasible to study gene expression heterogeneity and to characterise genes based on their coefficient of variation. METHODS: We collected single cell gene expression profiles for 32 human and 39 mouse embryonic stem cells and studied correlation between diverse characteristics such as network connectivity and coefficient of variation (CV) across single cells. We further systematically characterised properties unique to High CV genes. RESULTS: Highly expressed genes tended to have a low CV and were enriched for cell cycle genes. In contrast, High CV genes were co-expressed with other High CV genes, were enriched for bivalent (H3K4me3 and H3K27me3) marked promoters and showed enrichment for response to DNA damage and DNA repair. CONCLUSIONS: Taken together, this analysis demonstrates the divergent characteristics of genes based on their CV. High CV genes tend to form co-expression clusters and they explain bivalency at least in part.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Embryonic Stem Cells/cytology , Humans , Mice
15.
FEBS Lett ; 589(24 Pt B): 3866-70, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26619763

ABSTRACT

Genome-wide data is accumulating in an unprecedented way in the public domain. Re-mining this data shows great potential to generate novel hypotheses. However this approach is dependent on the quality (technical and biological) of the underlying data. Here we performed a systematic analysis of chromatin immunoprecipitation (ChIP) sequencing data of transcription and epigenetic factors from the encyclopaedia of DNA elements (ENCODE) resource to demonstrate that about one third of conditions with replicates show low concordance between replicate peak lists. This serves as a case study to demonstrate a caveat concerning genome-wide analyses and highlights a need to validate the quality of each sample before performing further associative analyses.


Subject(s)
Chromatin Immunoprecipitation , Databases, Genetic , Genomics/methods , Sequence Analysis, DNA , Epigenesis, Genetic , Histone Deacetylase 2/genetics , Humans , K562 Cells , Proto-Oncogene Proteins c-myc/genetics , Reproducibility of Results , Transcription Factors/metabolism
16.
Sci Rep ; 5: 16791, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26582124

ABSTRACT

In embryonic stem (ES) cells, developmental regulators have a characteristic bivalent chromatin signature marked by simultaneous presence of both activation (H3K4me3) and repression (H3K27me3) signals and are thought to be in a 'poised' state for subsequent activation or silencing during differentiation. We collected eleven pairs (H3K4me3 and H3K27me3) of ChIP sequencing datasets in human ES cells and eight pairs in murine ES cells, and predicted high-confidence (HC) bivalent promoters. Over 85% of H3K27me3 marked promoters were bivalent in human and mouse ES cells. We found that (i) HC bivalent promoters were enriched for developmental factors and were highly likely to be differentially expressed upon transcription factor perturbation; (ii) murine HC bivalent promoters were occupied by both polycomb repressive component classes (PRC1 and PRC2) and grouped into four distinct clusters with different biological functions; (iii) HC bivalent and active promoters were CpG rich while H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct sets of regulators distinguished bivalent from active promoters. Moreover, a 'TCCCC' sequence motif was specifically enriched in bivalent promoters. Finally, this analysis will serve as a resource for future studies to further understand transcriptional regulation during embryonic development.


Subject(s)
CpG Islands/genetics , Embryonic Stem Cells/metabolism , Mammals/genetics , Nucleotide Motifs/genetics , Polycomb-Group Proteins/metabolism , Promoter Regions, Genetic , Animals , Base Sequence , Chromatin/metabolism , Gene Expression Profiling , Humans , Mice , RNA Polymerase II/metabolism , Species Specificity , Transcription Factors/metabolism
17.
Cancer Res ; 75(20): 4335-50, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26282171

ABSTRACT

The transcription accessory factor TIF1γ/TRIM33/RFG7/PTC7/Ectodermin functions as a tumor suppressor that promotes development and cellular differentiation. However, its precise function in cancer has been elusive. In the present study, we report that TIF1γ inactivation causes cells to accumulate chromosomal defects, a hallmark of cancer, due to attenuations in the spindle assembly checkpoint and the post-mitotic checkpoint. TIF1γ deficiency also caused a loss of contact growth inhibition and increased anchorage-independent growth in vitro and in vivo. Clinically, reduced TIF1γ expression in human tumors correlated with an increased rate of genomic rearrangements. Overall, our work indicates that TIF1γ exerts its tumor-suppressive functions in part by promoting chromosomal stability.


Subject(s)
Cell Cycle Checkpoints/genetics , Chromosomal Instability , Gene Expression Regulation, Neoplastic , Mitosis/genetics , Neoplasms/genetics , Neoplasms/metabolism , Transcription Factors/metabolism , Animals , Carcinoma in Situ , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Disease Progression , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Gene Silencing , Humans , Mice , Mice, Knockout , Neoplasms/pathology , Ploidies , Spindle Apparatus/metabolism
18.
Nucleic Acids Res ; 43(12): 5838-54, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26007656

ABSTRACT

DNA methylation is thought to induce transcriptional silencing through the combination of two mechanisms: the repulsion of transcriptional activators unable to bind their target sites when methylated, and the recruitment of transcriptional repressors with specific affinity for methylated DNA. The Methyl CpG Binding Domain proteins MeCP2, MBD1 and MBD2 belong to the latter category. Here, we present MBD2 ChIPseq data obtained from the endogenous MBD2 in an isogenic cellular model of oncogenic transformation of human mammary cells. In immortalized (HMEC-hTERT) or transformed (HMLER) cells, MBD2 was found in a large proportion of methylated regions and associated with transcriptional silencing. A redistribution of MBD2 on methylated DNA occurred during oncogenic transformation, frequently independently of local DNA methylation changes. Genes downregulated during HMEC-hTERT transformation preferentially gained MBD2 on their promoter. Furthermore, depletion of MBD2 induced an upregulation of MBD2-bound genes methylated at their promoter regions, in HMLER cells. Among the 3,160 genes downregulated in transformed cells, 380 genes were methylated at their promoter regions in both cell lines, specifically associated by MBD2 in HMLER cells, and upregulated upon MBD2 depletion in HMLER. The transcriptional MBD2-dependent downregulation occurring during oncogenic transformation was also observed in two additional models of mammary cell transformation. Thus, the dynamics of MBD2 deposition across methylated DNA regions was associated with the oncogenic transformation of human mammary cells.


Subject(s)
Cell Transformation, Neoplastic/genetics , DNA Methylation , DNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Binding Sites , Breast/cytology , Cell Line , Cell Line, Transformed , Down-Regulation , Epithelial Cells/metabolism , Female , Homeodomain Proteins/metabolism , Humans , Phenotype , Telomerase/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Zinc Finger E-box-Binding Homeobox 1
19.
Oncotarget ; 5(4): 1004-13, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24657971

ABSTRACT

Loss of secreted phospholipase A2 receptor (PLA2R1) has recently been found to render human primary cells more resistant to senescence whereas increased PLA2R1 expression is able to induce cell cycle arrest, cancer cell death or blockage of cancer cell transformation in vitro, suggesting that PLA2R1 displays tumor suppressive activities. Here we report that PLA2R1 expression strongly decreases in samples of human renal cell carcinoma (RCC). Knockdown of PLA2R1 increases renal cancer cell tumorigenicity supporting a role of PLA2R1 loss to promote in vivo RCC growth. Most RCC result from Von Hippel-Lindau (VHL) tumor suppressor loss-of-function and subsequent gain-of-function of the oncogenic HIF-2alpha/c-MYC pathway. Here, by genetically manipulating VHL, HIF-2alpha and c-MYC, we demonstrate that loss of VHL, stabilization of HIF-2alpha and subsequent increased c-MYC activity, binding and transcriptional repression, through induction of PLA2R1 DNA methylation closed to PLA2R1 transcriptional start site, results in decreased PLA2R1 transcription. Our results describe for the first time an oncogenic pathway leading to PLA2R1 transcriptional repression and the importance of this repression for tumor growth.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Phospholipase A2/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Female , Heterografts , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mice , Mice, Nude , Proto-Oncogene Proteins c-myc/genetics , Receptors, Phospholipase A2/genetics , Signal Transduction , Transfection
20.
EMBO Mol Med ; 5(12): 1821-34, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24293316

ABSTRACT

The secreted factor netrin-1 is upregulated in a fraction of human cancers as a mechanism to block apoptosis induced by netrin-1 dependence receptors DCC and UNC5H. Targeted therapies aiming to trigger tumour cell death via netrin-1/receptors interaction interference are under preclinical evaluation. We show here that Doxorubicin, 5-Fluorouracil, Paclitaxel and Cisplatin treatments trigger, in various human cancer cell lines, an increase of netrin-1 expression which is accompanied by netrin-1 receptors increase. This netrin-1 upregulation which appears to be p53-dependent is a survival mechanism as netrin-1 silencing by siRNA is associated with a potentiation of cancer cell death upon Doxorubicin treatment. We show that candidate drugs interfering with netrin-1/netrin-1 receptors interactions potentiate Doxorubicin, Cisplatin or 5-Fluorouracil-induced cancer cell death in vitro. Moreover, in a model of xenografted nude mice, we show that systemic Doxorubicin treatment triggers netrin-1 upregulation in the tumour but not in normal organs, enhancing and prolonging tumour growth inhibiting effect of a netrin-1 interfering drug. Together these data suggest that combining conventional chemotherapies with netrin-1 interference could be a promising therapeutic approach.


Subject(s)
Antineoplastic Agents/toxicity , Apoptosis/drug effects , Nerve Growth Factors/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/toxicity , Doxorubicin/therapeutic use , Doxorubicin/toxicity , Female , Fluorouracil/toxicity , Humans , Lung Neoplasms/drug therapy , Mice , Mice, Nude , Nerve Growth Factors/antagonists & inhibitors , Nerve Growth Factors/genetics , Netrin Receptors , Netrin-1 , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Cell Surface/metabolism , Transplantation, Heterologous , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...