Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 5(7): e02044, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31338465

ABSTRACT

The Gardenia, traditional medicinal plant used from ancient time to increase appetite and other medicinal uses has been employed for the synthesis of superparamagnetic α-Fe2O3 nanoparticles (NPs). The plant extracts unveiled its bifunctional nature through the reducing ferric ions by phenolic groups and capping nature through the -OH bonding over the NPs surface. The prepared NPs exhibits α-Fe2O3 phase among iron oxides and spherical morphology with an average size around 5 nm. The magnetic measurements proved the superparamagnetic behavior of NPs with non-saturating MS value of 8.5 emu/g at room temperature (300 K). Further, the hyperthermia study reveals, the NPs achieved a temperature of 40 °C and 43 °C within 6 min and reaches up to 43 °C and 45 °C within 10 min only for 5 µg/mL and 10 µg/mL concentrations respectively. Based on the heating profile of NPs, the SAR values (167.7 Oe, 300 MHz) calculated and are found to be around 62.75 W/g and 24.38 W/g for 5 µg/mL and 10 µg/mL NPs concentrations respectively. Subsequently, these have been used for toxicity assays, which presented enhanced cytotoxic effects on human mesenchymal cells lines proving them as a potential candidate for the biomedical applications.

2.
Phys Chem Chem Phys ; 14(34): 11886-95, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22850931

ABSTRACT

Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants.

SELECTION OF CITATIONS
SEARCH DETAIL
...