Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Mol Genet Metab ; 140(4): 107713, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922835

ABSTRACT

Neuronal ceroid lipofuscinosis type 2 (CLN2) is an autosomal recessive neurodegenerative disorder with enzyme replacement therapy available. We present two siblings with a clinical diagnosis of CLN2 disease, but no identifiable TPP1 variants after standard clinical testing. Long-read sequencing identified a homozygous deep intronic variant predicted to affect splicing, confirmed by clinical DNA and RNA sequencing. This case demonstrates how traditional laboratory assays can complement emerging molecular technologies to provide a precise molecular diagnosis.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Humans , Serine Proteases/genetics , Aminopeptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Neuronal Ceroid-Lipofuscinoses/genetics
2.
Genet Med ; 23(8): 1514-1521, 2021 08.
Article in English | MEDLINE | ID: mdl-33846581

ABSTRACT

PURPOSE: Reports have questioned the dogma of exclusive maternal transmission of human mitochondrial DNA (mtDNA), including the recent report of an admixture of two mtDNA haplogroups in individuals from three multigeneration families. This was interpreted as being consistent with biparental transmission of mtDNA in an autosomal dominant-like mode. The authenticity and frequency of these findings are debated. METHODS: We retrospectively analyzed individuals with two mtDNA haplogroups from 2017 to 2019 and selected four families for further study. RESULTS: We identified this phenomenon in 104/27,388 (approximately 1/263) unrelated individuals. Further study revealed (1) a male with two mitochondrial haplogroups transmits only one haplogroup to some of his offspring, consistent with nuclear transmission; (2) the heteroplasmy level of paternally transmitted variants is highest in blood, lower in buccal, and absent in muscle or urine of the same individual, indicating it is inversely correlated with mtDNA content; and (3) paternally transmitted apparent large-scale mtDNA deletions/duplications are not associated with a disease phenotype. CONCLUSION: These findings strongly suggest that the observed mitochondrial haplogroup of paternal origin resulted from coamplification of rare, concatenated nuclear mtDNA segments with genuine mtDNA during testing. Evaluation of additional specimen types can help clarify the clinical significance of the observed results.


Subject(s)
DNA, Mitochondrial , Mitochondria , DNA, Mitochondrial/genetics , Haplotypes , Humans , Male , Mitochondria/genetics , Phenotype , Retrospective Studies
5.
Appl Physiol Nutr Metab ; 42(3): 278-284, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28177749

ABSTRACT

Studies of physical activity behaviours have increasingly shown the importance of heritable factors such as genetic variation. Nonsynonymous polymorphisms of alpha-actinin 3 (ACTN3) and the ß-adrenergic receptors 1 and 3 (ADRB1 and ADRB3) have been previously associated with exercise capacity and cardiometabolic health. We thus hypothesized that these polymorphisms are also related to physical activity behaviours in young adults. To test this hypothesis we examined relationships between ACTN3 (R577X), ARDB1 (Arg389Gly), ADRB3 (Trp64Arg), and physical activity behaviours in university students. We stratified for student enrollment in kinesiology degree programs compared with nonmajors as we previously found this to be a predictor of physical activity. We did not identify novel associations between physical activity and ACTN3. However, the minor alleles of ADRB1 and ADRB3 were significantly underrepresented in kinesiology students compared with nonmajors. Furthermore, carriers of the ADRB1 minor allele reported reduced participation in moderate physical activity and increased afternoon fatigue compared with ancestral allele homozygotes. Together, these findings suggest that the heritability of physical activity behaviours in young adults may be linked to nonsynonymous polymorphisms within ß-adrenergic receptors.


Subject(s)
Actinin/genetics , Exercise , Health Behavior , Kinesiology, Applied/education , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-3/genetics , Adolescent , Adult , Alleles , Blood Glucose/metabolism , Cholesterol/blood , Cohort Studies , Diet , Female , Genetic Loci , Genetic Markers , Genotyping Techniques , Glycated Hemoglobin/metabolism , Humans , Male , Metabolic Syndrome/blood , Metabolic Syndrome/diagnosis , Metabolic Syndrome/genetics , Polymorphism, Single Nucleotide , Students , Surveys and Questionnaires , Triglycerides/blood , Young Adult
6.
Am J Med Genet A ; 173(2): 501-509, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27797444

ABSTRACT

We describe a patient with failure to thrive, hepatomegaly, liver dysfunction, and elevation of multiple plasma lysosomal enzyme activities mimicking mucolipidosis II or III, in whom a diagnosis of hereditary fructose intolerance (HFI) was ultimately obtained. She presented before introduction of solid foods, given her consumption of a fructose-containing infant formula. We present the most extensive panel of lysosomal enzyme activities reported to date in a patient with HFI, and propose that multiple enzyme elevations in plasma, especially when in conjunction with a normal plasma α-mannosidase activity, should elicit a differential diagnosis of HFI. We also performed a review of the literature on the different etiologies of elevated lysosomal enzyme activities in serum or plasma. © 2016 Wiley Periodicals, Inc.


Subject(s)
Fructose Intolerance/diagnosis , Mucolipidoses/diagnosis , Biomarkers/blood , Diagnosis, Differential , Enzyme Activation , Female , Fructose Intolerance/blood , Fructose Intolerance/genetics , Humans , Infant , Leukocytes/enzymology , Lysosomes/enzymology , Mucolipidoses/blood , Mucolipidoses/genetics , Phenotype
7.
PLoS One ; 11(1): e0148112, 2016.
Article in English | MEDLINE | ID: mdl-26821164

ABSTRACT

Glucocorticoid receptor (NR3C1) polymorphisms associate with obesity, muscle strength, and cortisol sensitivity. We examined associations among four NR3C1 polymorphisms and the muscle response to resistance training (RT). European-American adults (n = 602, 23.8±0.4yr) completed a 12 week unilateral arm RT program. Maximum voluntary contraction (MVC) assessed isometric strength (kg) and MRI assessed biceps size (cm2) pre- and post-resistance training. Subjects were genotyped for NR3C1 -2722G>A, -1887G>A, -1017T>C, and +363A>G. Men carrying the -2722G allele gained less relative MVC (17.3±1.2vs33.5±6.1%) (p = 0.010) than AA homozygotes; men with -1887GG gained greater relative MVC than A allele carriers (19.6±1.4vs13.2±2.3%) (p = 0.016). Women carrying the -1017T allele gained greater relative size (18.7±0.5vs16.1±0.9%) (p = 0.016) than CC homozygotes. We found sex-specific NR3C1 associations with the muscle strength and size response to RT. Future studies should investigate whether these associations are partially explained by cortisol's actions in muscle tissue as they interact with sex differences in cortisol production.


Subject(s)
Muscle Strength , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Receptors, Glucocorticoid/genetics , Resistance Training , Adult , Female , Humans , Male , Muscle Contraction , Polymorphism, Single Nucleotide , Young Adult
8.
Sci Rep ; 5: 18369, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26670709

ABSTRACT

Necrotizing enterocolitis (NEC) is a devastating gastrointestinal emergency. The purpose of this study is to determine if functional single nucleotide polymorphisms (SNPs) in immune-modulating genes pre-dispose infants to NEC. After Institutional Review Board approval and parental consent, buccal swabs were collected for DNA extraction. TaqMan allelic discrimination assays and BglII endonuclease digestion were used to genotype specific inflammatory cytokines and TRIM21. Statistical analysis was completed using logistic regression. 184 neonates were analyzed in the study. Caucasian neonates with IL-6 (rs1800795) were over 6 times more likely to have NEC (p = 0.013; OR = 6.61, 95% CI 1.48-29.39), and over 7 times more likely to have Stage III disease (p = 0.011; OR = 7.13, (95% CI 1.56-32.52). Neonates with TGFß-1 (rs2241712) had a decreased incidence of NEC-related perforation (p = 0.044; OR = 0.28, 95% CI: 0.08-0.97) and an increased incidence of mortality (p = 0.049; OR = 2.99, 95% CI: 1.01 - 8.86). TRIM21 (rs660) was associated with NEC-related intestinal perforation (p = 0.038; OR = 4.65, 95% CI 1.09-19.78). In premature Caucasian neonates, the functional SNP IL-6 (rs1800795) is associated with both the development and increased severity of NEC. TRIM21 (rs660) and TGFß-1 (rs2241712) were associated with NEC- related perforation in all neonates in the cohort. These findings suggest a possible genetic role in the development of NEC.


Subject(s)
Enterocolitis, Necrotizing , Interleukin-6 , Polymorphism, Single Nucleotide/immunology , Ribonucleoproteins , Transforming Growth Factor beta1 , Enterocolitis, Necrotizing/genetics , Enterocolitis, Necrotizing/immunology , Female , Humans , Infant, Newborn , Interleukin-6/genetics , Interleukin-6/immunology , Male , Ribonucleoproteins/genetics , Ribonucleoproteins/immunology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/immunology
9.
Sports Med Open ; 1(1): 34, 2015.
Article in English | MEDLINE | ID: mdl-26495240

ABSTRACT

BACKGROUND: Meta-analysis of genome-wide association studies identified obesity-related genetic variants. Due to the pleiotropic effects of related phenotypes, we tested six of these obesity-related genetic variants for their association with physical activity: fat mass and obesity-associated (FTO)(rs9939609)T>A, potassium channel tetramerization domain containing (KCTD15) (rs11084753)G>A, melanocortin receptor4 (MC4R)(rs17782313)T>C, neuronal growth regulator 1 (NEGR1)(rs2815752)A>G, SH2B adapter protein 1 (SH2B1)(rs7498665)A>G, and transmembrane protein18 (TMEM18)(rs6548238)C>T. METHOD: European-American women (n = 263) and men (n = 229) (23.5 ± 0.3 years, 24.6 ± 0.2 kg/m2) were genotyped and completed the Paffenbarger physical activity Questionnaire. Physical activity volume in metabolic energy equivalents [MET]-hour/week was derived from the summed time spent (hour/week) times the given MET value for vigorous, moderate, and light intensity physical activity, and sitting and sleeping, respectively. Multivariable adjusted [(age, sex, and body mass index (BMI)] linear regression tested associations among genotype (dominant/recessive model) and the log of physical activity volume. RESULT: MC4R (rs17782313)T>C explained 1.1 % (p = 0.02), TMEM18(rs6548238)C>T 1.2 % (p = 0.01), and SH2B1 (rs7498665)A>G 0.6 % (p = 0.08) of the variability in physical activity volume. Subjects with the MC4R C allele spent 3.5 % less MET-hour/week than those with the TT genotype (p = 0.02). Subjects with the TMEM18 T allele spent 4.1 % less MET-hour/week than those with the CC genotype (p = 0.01). Finally, subjects with the SH2B1 GG genotype spent 3.6 % less MET-hour/week than A allele carriers (p = 0.08). CONCLUSION: Our findings suggest a shared genetic influence among some obesity-related gene loci and physical activity phenotypes that should be explored further. Physical activity volume differences by genotype have public health importance equating to 11-13 lb weight difference annually.

10.
Mil Med ; 180(9): 1001-5, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26327553

ABSTRACT

OBJECTIVE: Muscle-specific creatine kinase is thought to play an integral role in maintaining energy homeostasis by providing a supply of creatine phosphate. The genetic variant, rs8111989, contributes to individual differences in physical performance, and thus the purpose of this study was to determine if rs8111989 variant is predictive of Physical Fitness Test (PFT) scores in male, military infantry recruits. METHODS: DNA was extracted from whole blood, and genotyping was performed in 176 Marines. Relationships between PFT measures (run, sit-ups, and pull-ups) and genotype were determined. RESULTS: Participants with 2 copies of the T allele for rs8111989 variant had higher PFT scores for run time, pull-ups, and total PFT score. Specifically, participants with 2 copies of the TT allele (variant) (n = 97) demonstrated an overall higher total PFT score as compared with those with one copy of the C allele (n = 79) (TT: 250 ± 31 vs. CC/CT: 238 ± 31; p = 0.02), run score (TT: 82 ± 10 vs. CC/CT: 78 ± 11; p = 0.04) and pull-up score (TT: 78 ± 11 vs. CC/CT: 65 ± 21; p = 0.04) or those with the CC/CT genotype. CONCLUSION: These results demonstrate an association between physical performance measures and genetic variation in the muscle-specific creatine kinase gene (rs8111989).


Subject(s)
Creatine Kinase, MM Form/genetics , Military Personnel , Physical Fitness , Adolescent , Exercise Test , Genotype , Humans , Male , Polymorphism, Single Nucleotide , United States , Young Adult
11.
Acta Neuropathol ; 130(4): 575-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26264609

ABSTRACT

Among brain tumors, the BRAF (V600E) mutation is frequently associated with pleomorphic xanthoastrocytomas (PXAs) and gangliogliomas (GGs). This oncogenic mutation is also detected in ~5 % of other pediatric low-grade gliomas (LGGs) including pilocytic astrocytomas (PAs) and diffuse astrocytomas. In the current multi-institutional study of 56 non-PXA/non-GG diencephalic pediatric LGGs, the BRAF (V600) mutation rate is 36 %. V600-mutant tumors demonstrate a predilection for infants and young children (

Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Diencephalon/pathology , Glioma/genetics , Glioma/pathology , Proto-Oncogene Proteins B-raf/genetics , Adolescent , Age Factors , Brain Neoplasms/epidemiology , Brain Neoplasms/therapy , Child , Child, Preschool , Cohort Studies , Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease-Free Survival , Female , Follow-Up Studies , Glioma/epidemiology , Glioma/therapy , Humans , Infant , Magnetic Resonance Imaging , Male , Mutation , Neoplasm Grading , Treatment Outcome
12.
PLoS One ; 10(6): e0130644, 2015.
Article in English | MEDLINE | ID: mdl-26107372

ABSTRACT

Homozygosity for a premature stop codon (X) in the ACTN3 "sprinter" gene is common in humans despite the fact that it reduces muscle size, strength and power. Because of the close relationship between skeletal muscle function and cardiometabolic health we examined the influence of ACTN3 R577X polymorphism over cardiovascular and metabolic characteristics of young adults (n = 98 males, n = 102 females; 23 ± 4.2 years) from our Assessing Inherent Markers for Metabolic syndrome in the Young (AIMMY) study. Both males and females with the RR vs XX genotype achieved higher mean VO2 peak scores (47.8 ± 1.5 vs 43.2 ±1.8 ml/O2/min, p = 0.002) and exhibited higher resting systolic (115 ± 2 vs 105 ± mmHg, p = 0.027) and diastolic (69 ± 3 vs 59 ± 3 mmHg, p = 0.005) blood pressure suggesting a role for ACTN3 in the maintenance of vascular tone. We subsequently identified the expression of alpha-actinin 3 protein in pulmonary artery smooth muscle, which may explain the genotype-specific differences in cardiovascular adaptation to acute exercise. In addition, we utilized targeted serum metabolomics to distinguish between RR and XX genotypes, suggesting an additional role for the ACTN3 R577X polymorphism in human metabolism. Taken together, these results identify significant cardiometabolic effects associated with possessing one or more functional copies of the ACTN3 gene.


Subject(s)
Actinin/genetics , Athletic Performance/physiology , Muscle, Smooth/physiology , Physical Endurance/genetics , Polymorphism, Single Nucleotide , Actinin/metabolism , Adult , Blood Pressure/physiology , Exercise/physiology , Female , Gene Expression , Genotype , Humans , Male , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Pulmonary Artery/physiology , Respiratory Function Tests
13.
Eur J Clin Invest ; 45(4): 394-404, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25682967

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are noncoding RNA molecules that play important roles in the pathogenesis of various kidney diseases. We investigated whether patients with minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) have distinct circulating and urinary miRNA expression profiles that could lead to potential development of noninvasive biomarkers of the disease. MATERIALS AND METHODS: Exosome miRNAs were extracted from plasma and urine samples of patients with primary FSGS (n = 16) or MCD (n = 5) and healthy controls (n = 5). Differences in miRNA abundance were examined using Affymetrix GeneChip miRNA 3.0 arrays. QRT-PCR was used to validate the findings from the array. RESULTS: Comparison analysis of FSGS versus MCD revealed 126 and 155 differentially expressed miRNAs in plasma and in urine, respectively. Only 38 of these miRNAs were previously cited, whereas the remaining miRNAs have not been described. Comparison analysis showed that a significant number of miRNAs were downregulated in both plasma and urine samples of patients with FSGS compared to those with MCD. Plasma levels of miR-30b, miR-30c, miR-34b, miR-34c and miR-342 and urine levels of mir-1225-5p were upregulated in patients with MCD compared to patients with FSGS and controls (P < 0.001). Urinary levels of mir-1915 and miR-663 were downregulated in patients with FSGS compared to MCD and controls (P < 0.001), whereas the urinary levels of miR-155 were upregulated in patients with FSGS when compared to patients with MCD and controls (P < 0.005). CONCLUSIONS: Patients with FSGS and MCD have a unique circulating and urinary miRNA profile. The diagnostic and prognostic potential of miRNAs in FSGS and MCD warrants further studies.


Subject(s)
Glomerulosclerosis, Focal Segmental/genetics , MicroRNAs/genetics , Nephrosis, Lipoid/genetics , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Glomerulosclerosis, Focal Segmental/blood , Glomerulosclerosis, Focal Segmental/urine , Humans , Infant , Male , MicroRNAs/blood , MicroRNAs/urine , Middle Aged , Nephrosis, Lipoid/blood , Nephrosis, Lipoid/urine , Oligonucleotide Array Sequence Analysis , Pilot Projects , Young Adult
14.
Cereb Cortex ; 25(2): 336-45, 2015 Feb.
Article in English | MEDLINE | ID: mdl-23968837

ABSTRACT

Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals.


Subject(s)
Corpus Striatum/physiology , Dopamine Plasma Membrane Transport Proteins/genetics , Executive Function , Frontal Lobe/physiology , Polymorphism, Genetic , Brain Mapping , Female , Genotyping Techniques , Heterozygote , Humans , Impulsive Behavior , Magnetic Resonance Imaging , Male , Memory, Short-Term , Neural Pathways/physiology , Psychological Tests , Rest , Young Adult
15.
Physiol Genomics ; 46(20): 747-65, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25138607

ABSTRACT

Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation.


Subject(s)
DNA Methylation/genetics , Diabetes Mellitus, Type 2/genetics , Exercise , Gene Regulatory Networks , MicroRNAs/genetics , Muscle, Skeletal/pathology , Obesity/genetics , Diabetes Mellitus, Type 2/complications , Epigenesis, Genetic , Female , Gene Expression Regulation , Glucose/metabolism , Humans , Lipid Metabolism , Male , MicroRNAs/metabolism , Middle Aged , Muscle, Skeletal/blood supply , Muscle, Skeletal/ultrastructure , Obesity/complications , Phenotype , Physical Endurance/genetics , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Resistance Training , Transcriptome/genetics
17.
Sci Rep ; 4: 4286, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24598548

ABSTRACT

We used a cost-effective, non-invasive method to obtain high-quality DNA from buccal epithelial-cells (BEC) of premature infants for genomic analysis. DNAs from BEC were obtained from premature infants with gestational age ≤ 36 weeks. Short terminal repeats (STRs) were performed simultaneously on DNA obtained from the buccal swabs and blood from the same patient. The STR profiles demonstrated that the samples originated from the same individual and exclude any contamination by external DNAs. Whole exome sequencing was performed on DNAs obtained from BEC on premature infants with and without necrotizing enterocolitis, and successfully provided a total number of reads and variants corroborating with those obtained from healthy blood donors. We provide a proof of concept that BEC is a reliable and preferable source of DNA for high-throughput sequencing in premature infants.


Subject(s)
Genomics , Infant, Premature , Epithelial Cells/metabolism , Exome , Genetic Loci , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Infant, Newborn , Microsatellite Repeats , Mouth Mucosa/cytology
18.
Nephrol Dial Transplant ; 29(4): 864-72, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24516231

ABSTRACT

BACKGROUND: Epigenetic mechanisms may be important in the progression of chronic kidney disease (CKD). METHODS: We studied the genome-wide DNA methylation pattern associated with rapid loss of kidney function using the Infinium HumanMethylation 450 K BeadChip in 40 Chronic Renal Insufficiency (CRIC) study participants (n = 3939) with the highest and lowest rates of decline in estimated glomerular filtration rate. RESULTS: The mean eGFR slope was 2.2 (1.4) and -5.1 (1.2) mL/min/1.73 m(2) in the stable kidney function group and the rapid progression group, respectively. CpG islands in NPHP4, IQSEC1 and TCF3 were hypermethylated to a larger extent in subjects with stable kidney function (P-values of 7.8E-05 to 9.5E-05). These genes are involved in pathways known to promote the epithelial to mesenchymal transition and renal fibrosis. Other CKD-related genes that were differentially methylated are NOS3, NFKBIL2, CLU, NFKBIB, TGFB3 and TGFBI, which are involved in oxidative stress and inflammatory pathways (P-values of 4.5E-03 to 0.046). Pathway analysis using Ingenuity Pathway Analysis showed that gene networks related to cell signaling, carbohydrate metabolism and human behavior are epigenetically regulated in CKD. CONCLUSIONS: Epigenetic modifications may be important in determining the rate of loss of kidney function in patients with established CKD.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic , Glomerular Filtration Rate , Renal Insufficiency, Chronic/genetics , Adult , Aged , Disease Progression , Epithelial-Mesenchymal Transition , Female , Humans , Male , Middle Aged , Prognosis , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology , Young Adult
19.
Diabetes ; 63(1): 363-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24101675

ABSTRACT

Genome-wide association studies have identified thousands of variants that are associated with numerous phenotypes. One such variant, rs13266634, a nonsynonymous single nucleotide polymorphism in the solute carrier family 30 (zinc transporter) member eight gene, is associated with a 53% increase in the risk of developing type 2 diabetes (T2D). We hypothesized that individuals with the protective allele against T2D would show a positive response to short-term and long-term resistance exercise. Two cohorts of young adults-the Eccentric Muscle Damage (EMD; n = 156) cohort and the Functional Single Nucleotide Polymorphisms Associated with Muscle Size and Strength Study (FAMuSS; n = 874)-were tested for association of the rs13266634 variant with measures of skeletal muscle response to resistance exercise. Our results were sexually dimorphic in both cohorts. Men in the EMD study with two copies of the protective allele showed less post-exercise bout strength loss, less soreness, and lower creatine kinase values. In addition, men in the FAMuSS, homozygous for the protective allele, showed higher pre-exercise strength and larger arm skeletal muscle volume, but did not show a significant difference in skeletal muscle hypertrophy or strength with resistance training.


Subject(s)
Cation Transport Proteins/genetics , Exercise/physiology , Muscle, Skeletal/physiology , Polymorphism, Single Nucleotide , Adolescent , Adult , Female , Gene Frequency , Genotype , Humans , Male , Resistance Training , Zinc Transporter 8
20.
Acta Neuropathol ; 127(6): 881-95, 2014.
Article in English | MEDLINE | ID: mdl-24297113

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is a highly morbid form of pediatric brainstem glioma. Here, we present the first comprehensive protein, mRNA, and methylation profiles of fresh-frozen DIPG specimens (n = 14), normal brain tissue (n = 10), and other pediatric brain tumors (n = 17). Protein profiling identified 2,305 unique proteins indicating distinct DIPG protein expression patterns compared to other pediatric brain tumors. Western blot and immunohistochemistry validated upregulation of Clusterin (CLU), Elongation Factor 2 (EF2), and Talin-1 (TLN1) in DIPGs studied. Comparisons to mRNA expression profiles generated from tumor and adjacent normal brain tissue indicated two DIPG subgroups, characterized by upregulation of Myc (N-Myc) or Hedgehog (Hh) signaling. We validated upregulation of PTCH, a membrane receptor in the Hh signaling pathway, in a subgroup of DIPG specimens. DNA methylation analysis indicated global hypomethylation of DIPG compared to adjacent normal tissue specimens, with differential methylation of 24 genes involved in Hh and Myc pathways, correlating with protein and mRNA expression patterns. Sequencing analysis showed c.83A>T mutations in the H3F3A or HIST1H3B gene in 77 % of our DIPG cohort. Supervised analysis revealed a unique methylation pattern in mutated specimens compared to the wild-type DIPG samples. This study presents the first comprehensive multidimensional protein, mRNA, and methylation profiling of pediatric brain tumor specimens, detecting the presence of two subgroups within our DIPG cohort. This multidimensional analysis of DIPG provides increased analytical power to more fully explore molecular signatures of DIPGs, with implications for evaluating potential molecular subtypes and biomarker discovery for assessing response to therapy.


Subject(s)
Brain Stem Neoplasms/metabolism , Brain/metabolism , Glioma/metabolism , Adolescent , Adult , Blotting, Western , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Stem Neoplasms/genetics , Child , Child, Preschool , Cohort Studies , DNA Methylation , Female , Gene Expression Profiling , Glioma/genetics , Histones/genetics , Histones/metabolism , Humans , Immunohistochemistry , Male , Proteomics , RNA, Messenger/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...