Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35503416

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by progressive and catastrophic heterotopic ossification (HO) of skeletal muscle and associated soft tissues. FOP is caused by dominantly acting mutations in the gene encoding the bone morphogenetic protein (BMP) type I receptor, ACVR1 (ALK2), the most prevalent of which results in an arginine to histidine substitution at position 206 (ACVR1[R206H]). The fundamental pathological consequence of FOP-causing ACVR1 receptor mutations is to enable activin A to initiate canonical BMP signaling in fibro-adipogenic progenitors (FAPs), which drives HO. We developed a monoclonal blocking antibody (JAB0505) against the extracellular domain of ACVR1 and tested its effect on HO in 2 independent FOP mouse models. Although JAB0505 inhibited BMP-dependent gene expression in wild-type and ACVR1(R206H)-overexpressing cell lines, JAB0505 treatment profoundly exacerbated injury-induced HO. JAB0505-treated mice exhibited multiple, distinct foci of heterotopic lesions, suggesting an atypically broad anatomical domain of FAP recruitment to endochondral ossification. This was accompanied by dysregulated FAP population growth and an abnormally sustained immunological reaction following muscle injury. JAB0505 drove injury-induced HO in the absence of activin A, indicating that JAB0505 has receptor agonist activity. These data raise serious safety and efficacy concerns for the use of bivalent anti-ACVR1 antibodies to treat patients with FOP.


Subject(s)
Myositis Ossificans , Ossification, Heterotopic , Activin Receptors, Type I/genetics , Animals , Bone Morphogenetic Proteins/genetics , Humans , Mice , Mutation , Myositis Ossificans/genetics , Myositis Ossificans/metabolism , Ossification, Heterotopic/pathology , Osteogenesis
2.
PLoS Pathog ; 17(2): e1008787, 2021 02.
Article in English | MEDLINE | ID: mdl-33529198

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite that relies on three distinct secretory organelles, the micronemes, rhoptries, and dense granules, for parasite survival and disease pathogenesis. Secretory proteins destined for these organelles are synthesized in the endoplasmic reticulum (ER) and sequentially trafficked through a highly polarized endomembrane network that consists of the Golgi and multiple post-Golgi compartments. Currently, little is known about how the parasite cytoskeleton controls the positioning of the organelles in this pathway, or how vesicular cargo is trafficked between organelles. Here we show that F-actin and an unconventional myosin motor, TgMyoF, control the dynamics and organization of the organelles in the secretory pathway, specifically ER tubule movement, apical positioning of the Golgi and post-Golgi compartments, apical positioning of the rhoptries, and finally, the directed transport of Rab6-positive and Rop1-positive vesicles. Thus, this study identifies TgMyoF and actin as the key cytoskeletal components that organize the endomembrane system in T. gondii.


Subject(s)
Actins/metabolism , Cytoskeleton/metabolism , Golgi Apparatus/metabolism , Myosins/metabolism , Organelles/metabolism , Protozoan Proteins/metabolism , Toxoplasmosis/metabolism , Animals , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/metabolism , Toxoplasma/physiology , Toxoplasmosis/parasitology , rab GTP-Binding Proteins/metabolism
3.
Skelet Muscle ; 9(1): 5, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30791960

ABSTRACT

BACKGROUND: Group I Paks are serine/threonine kinases that function as major effectors of the small GTPases Rac1 and Cdc42, and they regulate cytoskeletal dynamics, cell polarity, and transcription. We previously demonstrated that Pak1 and Pak2 function redundantly to promote skeletal myoblast differentiation during postnatal development and regeneration in mice. However, the roles of Pak1 and Pak2 in adult muscle homeostasis are unknown. Choline kinase ß (Chk ß) is important for adult muscle homeostasis, as autosomal recessive mutations in CHKß are associated with two human muscle diseases, megaconial congenital muscular dystrophy and proximal myopathy with focal depletion of mitochondria. METHODS: We analyzed mice conditionally lacking Pak1 and Pak2 in the skeletal muscle lineage (double knockout (dKO) mice) over 1 year of age. Muscle integrity in dKO mice was assessed with histological stains, immunofluorescence, electron microscopy, and western blotting. Assays for mitochondrial respiratory complex function were performed, as was mass spectrometric quantification of products of choline kinase. Mice and cultured myoblasts deficient for choline kinase ß (Chk ß) were analyzed for Pak1/2 phosphorylation. RESULTS: dKO mice developed an age-related myopathy. By 10 months of age, dKO mouse muscles displayed centrally-nucleated myofibers, fibrosis, and signs of degeneration. Disease severity occurred in a rostrocaudal gradient, hindlimbs more strongly affected than forelimbs. A distinctive feature of this myopathy was elongated and branched intermyofibrillar (megaconial) mitochondria, accompanied by focal mitochondrial depletion in the central region of the fiber. dKO muscles showed reduced mitochondrial respiratory complex I and II activity. These phenotypes resemble those of rmd mice, which lack Chkß and are a model for human diseases associated with CHKß deficiency. Pak1/2 and Chkß activities were not interdependent in mouse skeletal muscle, suggesting a more complex relationship in regulation of mitochondria and muscle homeostasis. CONCLUSIONS: Conditional loss of Pak1 and Pak2 in mice resulted in an age-dependent myopathy with similarity to mice and humans with CHKß deficiency. Protein kinases are major regulators of most biological processes but few have been implicated in muscle maintenance or disease. Pak1/Pak2 dKO mice offer new insights into these processes.


Subject(s)
Mitochondrial Myopathies/metabolism , Muscle, Skeletal/metabolism , p21-Activated Kinases/metabolism , Animals , Choline Kinase/metabolism , Female , Male , Mice, Knockout , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Myopathies/genetics , Mitochondrial Myopathies/pathology , Mitochondrial Proteins/metabolism , Muscle, Skeletal/ultrastructure , p21-Activated Kinases/genetics
4.
Elife ; 72018 09 18.
Article in English | MEDLINE | ID: mdl-30226468

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by debilitating heterotopic ossification (HO). The retinoic acid receptor gamma agonist, palovarotene, and antibody-mediated activin A blockade have entered human clinical trials, but how these therapeutic modalities affect the behavior of pathogenic fibro/adipogenic progenitors (FAPs) is unclear. Using live-animal luminescence imaging, we show that transplanted pathogenic FAPs undergo rapid initial expansion, with peak number strongly correlating with HO severity. Palovarotene significantly reduced expansion of pathogenic FAPs, but was less effective than activin A inhibition, which restored wild-type population growth dynamics to FAPs. Palovarotene pretreatment did not reduce FAPs' skeletogenic potential, indicating that efficacy requires chronic administration. Although palovarotene inhibited chondrogenic differentiation in vitro and reduced HO in juvenile FOP mice, daily dosing resulted in aggressive synovial joint overgrowth and long bone growth plate ablation. These results highlight the challenge of inhibiting pathological bone formation prior to skeletal maturation.


Subject(s)
Bone and Bones/pathology , Myositis Ossificans/drug therapy , Ossification, Heterotopic/drug therapy , Pyrazoles/adverse effects , Pyrazoles/therapeutic use , Stilbenes/adverse effects , Stilbenes/therapeutic use , Activin Receptors, Type I , Activins , Animals , Cell Differentiation , Chondrogenesis , Joints/pathology , Luminescent Measurements , Mice , Osteochondroma/drug therapy , Osteogenesis , Receptor, Platelet-Derived Growth Factor alpha , Survival Analysis
5.
Nat Commun ; 9(1): 471, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396429

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal-dominant disorder characterized by progressive and profoundly disabling heterotopic ossification (HO). Here we show that fibro/adipogenic progenitors (FAPs) are a major cell-of-origin of HO in an accurate genetic mouse model of FOP (Acvr1 tnR206H ). Targeted expression of the disease-causing type I bone morphogenetic protein (BMP) receptor, ACVR1(R206H), to FAPs recapitulates the full spectrum of HO observed in FOP patients. ACVR1(R206H)-expressing FAPs, but not wild-type FAPs, activate osteogenic signaling in response to activin ligands. Conditional loss of the wild-type Acvr1 allele dramatically exacerbates FAP-directed HO, suggesting that mutant and wild-type ACVR1 receptor complexes compete for activin ligands or type II BMP receptor binding partners. Finally, systemic inhibition of activin A completely blocks HO and restores wild-type-like behavior to transplanted Acvr1 R206H/+ FAPs. Understanding the cells that drive HO may facilitate the development of cell-specific therapeutic approaches to inhibit catastrophic bone formation in FOP.


Subject(s)
Activin Receptors, Type I/genetics , Activins/metabolism , Disease Models, Animal , Myositis Ossificans/etiology , Stem Cells/metabolism , Activin Receptors, Type I/metabolism , Animals , Female , Gene Knock-In Techniques , Male , Mice, Transgenic , Muscle, Skeletal/physiology , Myositis Ossificans/metabolism , Osteogenesis , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...