Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902059

ABSTRACT

The Ebola virus glycoprotein (GP) gene templates several mRNAs that produce either the virion-associated transmembrane protein or one of two secreted glycoproteins. Soluble glycoprotein (sGP) is the predominant product. GP1 and sGP share an amino terminal sequence of 295 amino acids but differ in quaternary structure, with GP1 being a heterohexamer with GP2 and sGP a homodimer. Two structurally different DNA aptamers were selected against sGP that also bound GP1,2. These DNA aptamers were compared with a 2'FY-RNA aptamer for their interactions with the Ebola GP gene products. The three aptamers have almost identical binding isotherms for sGP and GP1,2 in solution and on the virion. They demonstrated high affinity and selectivity for sGP and GP1,2. Furthermore, one aptamer, used as a sensing element in an electrochemical format, detected GP1,2 on pseudotyped virions and sGP with high sensitivity in the presence of serum, including from an Ebola-virus-infected monkey. Our results suggest that the aptamers interact with sGP across the interface between the monomers, which is different from the sites on the protein bound by most antibodies. The remarkable similarity in functional features of three structurally distinct aptamers suggests that aptamers, like antibodies, have preferred binding sites on proteins.


Subject(s)
Aptamers, Nucleotide , Ebolavirus , Viral Envelope Proteins , Humans , Aptamers, Nucleotide/chemistry , Ebolavirus/chemistry , Viral Envelope Proteins/chemistry , Protein Multimerization
2.
ACS Appl Mater Interfaces ; 14(1): 150-158, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34937345

ABSTRACT

We report an experimental and computational approach for the fabrication and characterization of a highly sensitive and responsive label-free biosensor that does not require the presence of redox couples in electrolytes for sensitive electrochemical detection. The sensor is based on an aptamer-functionalized transparent electrode composed of nanoporous anodized alumina (NAA) grown on indium tin oxide (ITO)-covered glass. Electrochemical impedance changes in a thrombin binding aptamer (TBA)-functionalized NAA/ITO/glass electrode due to specific binding of α-thrombin are monitored for protein detection. The aptamer-functionalized electrode enables sensitive and specific thrombin protein detection with a detection limit of ∼10 pM and a high signal-to-noise ratio. The transient impedance of the alumina film-covered surface is computed using a computational electrochemical impedance spectroscopy (EIS) approach and compared to experimental observations to identify the dominant mechanisms underlying the sensor response. The computational and experimental results indicate that the sensing response is due to the modified ionic transport under the combined influence of steric hindrance and surface charge modification due to ligand/receptor binding between α-thrombin and the aptamer-covered alumina film. These results suggest that alumina film-covered electrodes utilize both steric and charge modulation for sensing, leading to tremendous improvement in the sensitivity and signal-to-noise ratio. The film configuration is amenable for miniaturization and can be readily incorporated into existing portable sensing systems.


Subject(s)
Aluminum Oxide/chemistry , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Nanopores , Thrombin/analysis , Tin Compounds/chemistry , Biosensing Techniques/instrumentation , Dielectric Spectroscopy/instrumentation , Dielectric Spectroscopy/methods , Electric Impedance , Electrodes , Limit of Detection
3.
Sensors (Basel) ; 17(11)2017 Nov 11.
Article in English | MEDLINE | ID: mdl-29137115

ABSTRACT

Although many studies concerning the detection of influenza virus have been published, a paper-based, label-free electrochemical immunosensor has never been reported. Here, we present a cost-effective, handmade paper-based immunosensor for label-free electrochemical detection of influenza virus H1N1. This immunosensor was prepared by modifying paper with a spray of hydrophobic silica nanoparticles, and using stencil-printed electrodes. We used a glass vaporizer to spray the hydrophobic silica nanoparticles onto the paper, rendering it super-hydrophobic. The super-hydrophobicity, which is essential for this paper-based biosensor, was achieved via 30-40 spray coatings, corresponding to a 0.39-0.41 mg cm-2 coating of nanoparticles on the paper and yielding a water contact angle of 150° ± 1°. Stencil-printed carbon electrodes modified with single-walled carbon nanotubes and chitosan were employed to increase the sensitivity of the sensor, and the antibodies were immobilized via glutaraldehyde cross-linking. Differential pulse voltammetry was used to assess the sensitivity of the sensors at various virus concentrations, ranging from 10 to 104 PFU mL-1, and the selectivity was assessed against MS2 bacteriophages and the influenza B viruses. These immunosensors showed good linear behaviors, improved detection times (30 min), and selectivity for the H1N1 virus with a limit of detection of 113 PFU mL-1, which is sufficiently sensitive for rapid on-site diagnosis. The simple and inexpensive methodologies developed in this study have great potential to be used for the development of a low-cost and disposable immunosensor for detection of pathogenic microorganisms, especially in developing countries.


Subject(s)
Immunoassay , Antibodies, Immobilized , Biosensing Techniques , Electrochemical Techniques , Electrodes , Gold , Influenza A Virus, H1N1 Subtype , Limit of Detection , Nanotubes, Carbon
SELECTION OF CITATIONS
SEARCH DETAIL
...