Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Multiscale Model Simul ; 7(2): 888-909, 2008 Jan 27.
Article in English | MEDLINE | ID: mdl-19043621

ABSTRACT

A numerical model based on one-dimensional balance laws and ad hoc zero-dimensional boundary conditions is tested against experimental data. The study concentrates on the circle of Willis, a vital subnetwork of the cerebral vasculature. The main goal is to obtain efficient and reliable numerical tools with predictive capabilities. The flow is assumed to obey the Navier-Stokes equations, while the mechanical reactions of the arterial walls follow a viscoelastic model. Like many previous studies, a dimension reduction is performed through averaging. Unlike most previous work, the resulting model is both calibrated and validated against in vivo data, more precisely transcranial Doppler data of cerebral blood velocity. The network considered has three inflow vessels and six outflow vessels. Inflow conditions come from the data, while outflow conditions are modeled. Parameters in the outflow conditions are calibrated using a subset of the data through ensemble Kalman filtering techniques. The rest of the data is used for validation. The results demonstrate the viability of the proposed approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...