Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Nat Nanotechnol ; 19(6): 738-743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413791

ABSTRACT

Optically activated reactions initiate biological processes such as photosynthesis or vision, but can also control polymerization, catalysis or energy conversion. Methods relying on the manipulation of light at macroscopic and mesoscopic scales are used to control on-surface photochemistry, but do not offer atomic-scale control. Here we take advantage of the confinement of the electromagnetic field at the apex of a scanning tunnelling microscope tip to drive the phototautomerization of a free-base phthalocyanine with submolecular precision. We can control the reaction rate and the relative tautomer population through a change in the laser excitation wavelength or through the tip position. Atomically resolved tip-enhanced photoluminescence spectroscopy and hyperspectral mapping unravel an excited-state mediated process, which is quantitatively supported by a comprehensive theoretical model combining ab initio calculations with a parametric open-quantum-system approach. Our experimental strategy may allow insights in other photochemical reactions and proof useful to control complex on-surface reactions.

2.
J Am Chem Soc ; 145(24): 13215-13222, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289656

ABSTRACT

Vibrational strong coupling (VSC) occurs when molecular vibrations hybridize with the modes of an optical cavity, an interaction mediated by vacuum fluctuations. VSC has been shown to influence the rates and selectivity of chemical reactions. However, a clear understanding of the mechanism at play remains elusive. Here, we show that VSC affects the polarity of solvents, which is a parameter well-known to influence reactivity. The strong solvatochromic response of Reichardt's dye (RD) was used to quantify the polarity of a series of alcohol solvents at visible wavelengths. We observed that, by simultaneously coupling the OH and CH vibrational bands of the alcohols, the absorption maximum of Reichardt's dye redshifted by up to ∼15.1 nm, corresponding to an energy change of 5.1 kJ·mol-1. With aliphatic alcohols, the magnitude of the absorption change of RD was observed to be related to the length of the alkyl chain, the molecular surface area, and the polarizability, indicating that dispersion forces are impacted by strong coupling. Therefore, we propose that dispersion interactions, which themselves originate from vacuum fluctuations, are impacted under strong coupling and are therefore critical to understanding how VSC influences chemistry.

3.
Opt Express ; 30(19): 34984-34997, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242501

ABSTRACT

The scattering properties of metallic optical antennas are typically examined through the lens of their plasmonic resonances. However, non-plasmonic transition metals also sustain surface waves in the visible. We experimentally investigate in this work the far-field diffraction properties of apertured optical antennas milled on non-plasmonic W films and compare the results with plasmonic references in Ag and Au. The polarization-dependent diffraction patterns and the leakage signal emerging from apertured antennas in both kinds of metals are recorded and analyzed. This thorough comparison with surface plasmon waves reveals that surface waves are launched on W and that they have the common abilities to confine the visible light at metal-dielectric interfaces offering the possibility to tailor the far-field emission. The results have been analyzed through theoretical models accounting for the propagation of a long range surface mode launched by subwavelength apertures, that is scattered in free space by the antenna. This surface mode on W can be qualitatively described as an analogy in the visible of the Zenneck wave in the radio regime. The nature of the new surface waves have been elucidated from a careful analysis of the asymptotic expansion of the electromagnetic propagators, which provides a convenient representation for explaining the Zenneck-like character of the excited waves and opens new ways to fundamental studies of surface waves at the nanoscale beyond plasmonics.

4.
Angew Chem Int Ed Engl ; 60(36): 19665-19670, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34255910

ABSTRACT

Strong coupling plays a significant role in influencing chemical reactions and tuning material properties by modifying the energy landscapes of the systems. Here we study the effect of vibrational strong coupling (VSC) on supramolecular organization. For this purpose, a rigid-rod conjugated polymer known to form gels was strongly coupled together with its solvent in a microfluidic IR Fabry-Perot cavity. Absorption and fluorescence studies indicate a large modification of the self-assembly under such cooperative VSC. Electron microscopy confirms that in this case, the supramolecular morphology is totally different from that observed in the absence of strong coupling. In addition, the self-assembly kinetics are altered and depend on the solvent vibration under VSC. The results are compared to kinetic isotope effects on the self-assembly to help clarify the role of different parameters under strong coupling. These findings indicate that VSC is a valuable new tool for controlling supramolecular assemblies with broad implications for the molecular and material sciences.

5.
Nano Lett ; 21(10): 4365-4370, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33945283

ABSTRACT

Light-Matter strong coupling in the vacuum limit has been shown, over the past decade, to enhance material properties. Oxide nanoparticles are known to exhibit weak ferromagnetism due to vacancies in the lattice. Here we report the 700-fold enhancement of the ferromagnetism of YBa2Cu3O7-x nanoparticles under a cooperative strong coupling at room temperature. The magnetic moment reaches 0.90 µB/mol, and with such a high value, it competes with YBa2Cu3O7-x superconductivity at low temperatures. This strong ferromagnetism at room temperature suggest that strong coupling is a new tool for the development of next-generation magnetic and spintronic nanodevices.

6.
ACS Nano ; 14(8): 10219-10225, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32806034

ABSTRACT

During the past decade, it has been shown that light-matter strong coupling of materials can lead to modified and often improved properties which has stimulated considerable interest. While charge transport can be enhanced in n-type organic semiconductors by coupling the electronic transition and thereby splitting the conduction band into polaritonic states, it is not clear whether the same process can also influence carrier transport in the valence band of p-type semiconductors. Here we demonstrate that it is indeed possible to enhance both the conductivity and photoconductivity of a p-type semiconductor rr-P3HT that is ultrastrongly coupled to plasmonic modes. It is due to the hybrid light-matter character of the virtual polaritonic excitations affecting the linear response of the material. Furthermore, in addition to being enhanced, the photoconductivity of rr-P3HT shows a modified spectral response due to the formation of the hybrid polaritonic states. This illustrates the potential of engineering the vacuum electromagnetic environment to improve the optoelectronic properties of organic materials.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118081, 2020 Apr 05.
Article in English | MEDLINE | ID: mdl-32000061

ABSTRACT

The combination of surface-enhanced resonance Raman spectroscopy (SERRS) and electrochemistry is an ideal tool to study the redox process of the heme proteins and is often performed on silver electrodes. In this manuscript, we present an approach using a microstructured gold surface that serves as the electrochemical working electrode, and at the same time, acts as SERS active substrate. The cell requires a micromolar concentration of sample at the electrode surface. Even if the performance of the gold grid as SERS substrate exhibited a smaller enhancement factor than expected for silver, oxidized and reduced spectra of proteins (Сyt c, Hb and Mb) monolayers could be obtained and the characteristic redox dependent shifts of the marker bands ν19, ν4 and ν10 were seen. The easy modification protocol and the higher stability of the gold electrode towards oxidative currents are the advantages of the present spectroeletrochemical cell. Finally, FDTD simulations confirm that the roughness of the gold grid has an effect on the Raman enhancement of the adsorbed proteins.


Subject(s)
Electrochemistry/methods , Electrodes , Gold/chemistry , Hemeproteins/analysis , Spectrum Analysis, Raman/methods , Animals , Oxidation-Reduction , Surface Properties
8.
Angew Chem Int Ed Engl ; 58(43): 15324-15328, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31449707

ABSTRACT

Vibrational strong coupling (VSC) has recently emerged as a completely new tool for influencing chemical reactivity. It harnesses electromagnetic vacuum fluctuations through the creation of hybrid states of light and matter, called polaritonic states, in an optical cavity resonant to a molecular absorption band. Here, we investigate the effect of vibrational strong coupling of water on the enzymatic activity of pepsin, where a water molecule is directly involved in the enzyme's chemical mechanism. We observe an approximately 4.5-fold decrease of the apparent second-order rate constant kcat /Km when coupling the water stretching vibration, whereas no effect was detected for the strong coupling of the bending vibration. The possibility of modifying enzymatic activity by coupling water demonstrates the potential of VSC as a new tool to study biochemical reactivity.

9.
Nanotechnology ; 29(36): 365201, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-29894980

ABSTRACT

The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert-Jaffrès model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices.

10.
Science ; 356(6345): 1373-1376, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28546317

ABSTRACT

Two-boson interference, a fundamentally quantum effect, has been extensively studied with photons through the Hong-Ou-Mandel effect and observed with guided plasmons. Using two freely propagating surface plasmon polaritons (SPPs) interfering on a lossy beam splitter, we show that the presence of loss enables us to modify the reflection and transmission factors of the beam splitter, thus revealing quantum interference paths that do not exist in a lossless configuration. We investigate the two-plasmon interference on beam splitters with different sets of reflection and transmission factors. Through coincidence-detection measurements, we observe either coalescence or anti-coalescence of SPPs. The results show that losses can be viewed as a degree of freedom to control quantum processes.

11.
Phys Rev Lett ; 117(15): 153601, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27768350

ABSTRACT

From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

12.
Angew Chem Int Ed Engl ; 55(38): 11462-6, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27529831

ABSTRACT

The ground-state deprotection of a simple alkynylsilane is studied under vibrational strong coupling to the zero-point fluctuations, or vacuum electromagnetic field, of a resonant IR microfluidic cavity. The reaction rate decreased by a factor of up to 5.5 when the Si-C vibrational stretching modes of the reactant were strongly coupled. The relative change in the reaction rate under strong coupling depends on the Rabi splitting energy. Product analysis by GC-MS confirmed the kinetic results. Temperature dependence shows that the activation enthalpy and entropy change significantly, suggesting that the transition state is modified from an associative to a dissociative type. These findings show that vibrational strong coupling provides a powerful approach for modifying and controlling chemical landscapes and for understanding reaction mechanisms.

13.
Angew Chem Int Ed Engl ; 55(21): 6202-6, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27072296

ABSTRACT

We present direct evidence of enhanced non-radiative energy transfer between two J-aggregated cyanine dyes strongly coupled to the vacuum field of a cavity. Excitation spectroscopy and femtosecond pump-probe measurements show that the energy transfer is highly efficient when both the donor and acceptor form light-matter hybrid states with the vacuum field. The rate of energy transfer is increased by a factor of seven under those conditions as compared to the normal situation outside the cavity, with a corresponding effect on the energy transfer efficiency. The delocalized hybrid states connect the donor and acceptor molecules and clearly play the role of a bridge to enhance the rate of energy transfer. This finding has fundamental implications for coherent energy transport and light-energy harvesting.

14.
Sci Adv ; 2(3): e1501574, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26998521

ABSTRACT

Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons.


Subject(s)
Surface Plasmon Resonance
15.
ACS Photonics ; 1(4): 365-370, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-25540811

ABSTRACT

We investigate experimentally the parameter space defining, in the visible range, the far-field diffraction properties of a single circular subwavelength aperture surrounded by periodic circular grooves milled on a metallic film. Diffraction patterns emerging from such an antenna are recorded under parallel- and perpendicular-polarized illumination at a given illumination wavelength. By monitoring the directivity and the gain of the antenna with respect to a single aperture, we point out the role played by the near-field surface plasmon excitations. The results can be analyzed through a Huygens-Fresnel model, accounting for the coherent interaction between the field radiated by the hole and the plasmonic field, propagating along the antenna surface and diffracted away in free space.

16.
Angew Chem Int Ed Engl ; 52(40): 10533-6, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23946186

ABSTRACT

The thermodynamics of strong coupling between molecules and the vacuum field is analyzed and the Gibbs free energy, the enthalpy, and entropy of the coupling process are determined for the first time. The thermodynamic parameters are a function of the Rabi splitting and the microscopic solvation. The results provide a new framework for understanding light-molecule strong coupling.

17.
Opt Express ; 20(16): 18085-90, 2012 Jul 30.
Article in English | MEDLINE | ID: mdl-23038356

ABSTRACT

Fluorescence spectroscopy is widely used to probe the electromagnetic intensity amplification on optical antennas, yet measuring the excitation intensity amplification is a challenge, as the detected fluorescence signal is an intricate combination of excitation and emission. Here, we describe a novel approach to quantify the electromagnetic amplification in aperture antennas by taking advantage of the intrinsic non linear properties of the fluorescence process. Experimental measurements of the fundamental f and second harmonic 2f amplitudes of the fluorescence signal upon excitation modulation are used to quantify the electromagnetic intensity amplification with plasmonic aperture antennas.

18.
Opt Express ; 20(6): 6124-34, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418492

ABSTRACT

We investigate directional couplers (DCs) formed by channel plasmon-polariton (CPP) waveguides (CPPWs). DCs comprising 5-µm-offset S-bends and 40-µm-long parallel CPPWs with different separations (0.08, 0.25, 0.5 and 2 µm) between V-groove channels are fabricated by using a focused ion-beam (FIB) technique in a 2-µm-thick gold film and characterized at telecom wavelengths (1425-1630 nm) with near-field optical microscopy. Experimental results reveal strong coupling, resulting in approximately equal power splitting between DC-CPPWs, for small CPPW separations (0.08 and 0.25 µm). The coupling gradually deteriorates with the increase of separation between V-grooves and practically vanishes for the separation of 2 µm. The DC-CPPW characteristics observed are found in good agreement with finite-element method (implemented in COMSOL) simulations.


Subject(s)
Surface Plasmon Resonance/instrumentation , Telecommunications/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
20.
Nano Lett ; 11(10): 4207-12, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21905740

ABSTRACT

Controlling the launching efficiencies and the directionality of surface plasmon polaritons (SPPs) and their decoupling to freely propagating light is a major goal for the development of plasmonic devices and systems. Here, we report on the design and experimental observation of a highly efficient unidirectional surface plasmon launcher composed of eleven subwavelength grooves, each with a distinct depth and width. Our observations show that, under normal illumination by a focused Gaussian beam, unidirectional SPP launching with an efficiency of at least 52% is achieved experimentally with a compact device of total length smaller than 8 µm. Reciprocally, we report that the same device can efficiently convert SPPs into a highly directive light beam emanating perpendicularly to the sample.

SELECTION OF CITATIONS
SEARCH DETAIL
...