Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(28): 16667-16677, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601177

ABSTRACT

Plants are known for their outstanding capacity to recover from various wounds and injuries. However, it remains largely unknown how plants sense diverse forms of injury and canalize existing developmental processes into the execution of a correct regenerative response. Auxin, a cardinal plant hormone with morphogen-like properties, has been previously implicated in the recovery from diverse types of wounding and organ loss. Here, through a combination of cellular imaging and in silico modeling, we demonstrate that vascular stem cell death obstructs the polar auxin flux, much alike rocks in a stream, and causes it to accumulate in the endodermis. This in turn grants the endodermal cells the capacity to undergo periclinal cell division to repopulate the vascular stem cell pool. Replenishment of the vasculature by the endodermis depends on the transcription factor ERF115, a wound-inducible regulator of stem cell division. Although not the primary inducer, auxin is required to maintain ERF115 expression. Conversely, ERF115 sensitizes cells to auxin by activating ARF5/MONOPTEROS, an auxin-responsive transcription factor involved in the global auxin response, tissue patterning, and organ formation. Together, the wound-induced auxin accumulation and ERF115 expression grant the endodermal cells stem cell activity. Our work provides a mechanistic model for wound-induced stem cell regeneration in which ERF115 acts as a wound-inducible stem cell organizer that interprets wound-induced auxin maxima.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Indoleacetic Acids/metabolism , Regeneration , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Division , Cell Self Renewal , Gene Expression Regulation, Plant , Plant Epidermis/cytology , Plant Epidermis/metabolism , Plant Growth Regulators/metabolism , Transcription Factors/genetics
2.
Cell ; 170(1): 102-113.e14, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28648662

ABSTRACT

Temperature has a profound influence on plant and animal development, but its effects on stem cell behavior and activity remain poorly understood. Here, we characterize the responses of the Arabidopsis root to chilling (low but above-freezing) temperature. Chilling stress at 4°C leads to DNA damage predominantly in root stem cells and their early descendants. However, only newly generated/differentiating columella stem cell daughters (CSCDs) preferentially die in a programmed manner. Inhibition of the DNA damage response in these CSCDs prevents their death but makes the stem cell niche more vulnerable to chilling stress. Mathematical modeling and experimental validation indicate that CSCD death results in the re-establishment of the auxin maximum in the quiescent center (QC) and the maintenance of functional stem cell niche activity under chilling stress. This mechanism improves the root's ability to withstand the accompanying environmental stresses and to resume growth when optimal temperatures are restored.


Subject(s)
Arabidopsis/physiology , Plant Roots/cytology , Stem Cells/cytology , Cell Division , Cold Temperature , Indoleacetic Acids/metabolism , Plant Roots/physiology , Stem Cell Niche , Stress, Physiological
3.
Res Microbiol ; 165(10): 813-25, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25463388

ABSTRACT

We have employed the RNase P RNA (RPR) gene, which is present as single copy in chromosome I of Leptospira spp. to investigate the phylogeny of structural domains present in the RNA subunit of the tRNA processing enzyme, RNase P. RPR gene sequences of 150 strains derived from NCBI database along with sequences determined from 8 reference strains were examined to fathom strain specific structural differences present in leptospiral RPR. Sequence variations in the RPR gene impacted on the configuration of loops, stems and bulges found in the RPR highlighting species and strain specific structural motifs. In vitro transcribed leptospiral RPR ribozymes are demonstrated to process pre-tRNA into mature tRNA in consonance with the positioning of Leptospira in the taxonomic domain of bacteria. RPR sequence datasets used to construct a phylogenetic tree exemplified the segregation of strains into their respective lineages with a (re)speciation of strain SH 9 to Leptospira borgpetersenii, strains Fiocruz LV 3954 and Fiocruz LV 4135 to Leptospira santarosai, strain CBC 613 to Leptospira kirschneri and strain HAI 1536 to Leptospira noguchii. Furthermore, it allowed characterization of an isolate P2653, presumptively characterized as either serovar Hebdomadis, Kremastos or Longnan to Leptospira weilii, serovar Longnan.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Evolution, Molecular , Leptospira/enzymology , RNA, Bacterial/chemistry , Ribonuclease P/chemistry , Ribonuclease P/genetics , Bacterial Proteins/metabolism , Base Sequence , Leptospira/chemistry , Leptospira/classification , Leptospira/genetics , Molecular Sequence Data , Nucleic Acid Conformation , Phylogeny , Protein Structure, Tertiary , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Ribonuclease P/metabolism
4.
PLoS One ; 9(9): e107453, 2014.
Article in English | MEDLINE | ID: mdl-25237819

ABSTRACT

Hypoxia/Reoxygenation (H/R) cardiac injury is of great importance in understanding Myocardial Infarctions, which affect a major part of the working population causing debilitating side effects and often-premature mortality. H/R injury primarily consists of apoptotic and necrotic death of cardiomyocytes due to a compromise in the integrity of the mitochondrial membrane. Major factors associated in the deregulation of the membrane include fluctuating reactive oxygen species (ROS), deregulation of mitochondrial permeability transport pore (MPTP), uncontrolled calcium (Ca2+) fluxes, and abnormal caspase-3 activity. Erythropoietin (EPO) is strongly inferred to be cardioprotective and acts by inhibiting the above-mentioned processes. Surprisingly, the underlying mechanism of EPO's action and H/R injury is yet to be fully investigated and elucidated. This study examined whether EPO maintains Ca2+ homeostasis and the mitochondrial membrane potential (ΔΨm) in cardiomyocytes when subjected to H/R injury and further explored the underlying mechanisms involved. H9C2 cells were exposed to different concentrations of EPO post-H/R, and 20 U/ml EPO was found to significantly increase cell viability by inhibiting the intracellular production of ROS and caspase-3 activity. The protective effect of EPO was abolished when H/R-induced H9C2 cells were treated with Wortmannin, an inhibitor of Akt, suggesting the mechanism of action through the activation Akt, a major survival pathway.


Subject(s)
Erythropoietin/pharmacology , Protective Agents/pharmacology , Reperfusion Injury/drug therapy , Animals , Caspase 3/metabolism , Cell Hypoxia/drug effects , Cell Line , Membrane Potential, Mitochondrial , Rats , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...