Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(3): 1231-1245, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30615449

ABSTRACT

Overexpressed human thymidine phosphorylase (hTP) has been associated with cancer aggressiveness and poor prognosis by triggering proangiogenic and antiapoptotic signaling. Designed as transition-state analogues by mimicking the oxacarbenium ion, novel pyrimidine-2,4-diones were synthesized and evaluated as inhibitors of hTP activity. The most potent compound (8g) inhibited hTP in the submicromolar range with a noncompetitive inhibition mode with both thymidine and inorganic phosphate substrates. Furthermore, compound 8g was devoid of apparent toxicity to a panel of mammalian cells, showed no genotoxicity signals, and had low probability of drug-drug interactions and moderate in vitro metabolic rates. Finally, treatment with 8g (50 mg/(kg day)) for 2 weeks (5 days/week) significantly reduced tumor growth using an in vivo glioblastoma model. To the best of our knowledge, this active compound is the most potent in vitro hTP inhibitor with a kinetic profile that cannot be reversed by the accumulation of any enzyme substrates.


Subject(s)
Brain Neoplasms/drug therapy , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glioblastoma/drug therapy , Thymidine Phosphorylase/antagonists & inhibitors , Animals , Area Under Curve , Cell Line , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Half-Life , Humans
2.
Front Immunol ; 8: 1709, 2017.
Article in English | MEDLINE | ID: mdl-29276513

ABSTRACT

Mice transplanted with human cord blood-derived hematopoietic stem cells (HSCs) became a powerful experimental tool for studying the heterogeneity of human immune reconstitution and immune responses in vivo. Yet, analyses of human T cell maturation in humanized models have been hampered by an overall low immune reactivity and lack of methods to define predictive markers of responsiveness. Long-lived human lentiviral induced dendritic cells expressing the cytomegalovirus pp65 protein (iDCpp65) promoted the development of pp65-specific human CD8+ T cell responses in NOD.Cg-Rag1 tm1Mom -Il2rγ tm1Wj humanized mice through the presentation of immune-dominant antigenic epitopes (signal 1), expression of co-stimulatory molecules (signal 2), and inflammatory cytokines (signal 3). We exploited this validated system to evaluate the effects of mouse sex in the dynamics of T cell homing and maturation status in thymus, blood, bone marrow, spleen, and lymph nodes. Statistical analyses of cell relative frequencies and absolute numbers demonstrated higher CD8+ memory T cell reactivity in spleen and lymph nodes of immunized female mice. In order to understand to which extent the multidimensional relation between organ-specific markers predicted the immunization status, the immunophenotypic profiles of individual mice were used to train an artificial neural network designed to discriminate immunized and non-immunized mice. The highest accuracy of immune reactivity prediction could be obtained from lymph node markers of female mice (77.3%). Principal component analyses further identified clusters of markers best suited to describe the heterogeneity of immunization responses in vivo. A correlation analysis of these markers reflected a tissue-specific impact of immunization. This allowed for an organ-resolved characterization of the immunization status of individual mice based on the identified set of markers. This new modality of multidimensional analyses can be used as a framework for defining minimal but predictive signatures of human immune responses in mice and suggests critical markers to characterize responses to immunization after HSC transplantation.

SELECTION OF CITATIONS
SEARCH DETAIL
...