Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 668: 947-957, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31018473

ABSTRACT

Climate is a major limiting factor for insect distributions and it is expected that a changing climate will likely alter spatial patterns of pest outbreaks. The Australian plague locust (APL) Chortoicetes terminifera, is the most economically important locust species in Australia. Invasions cause large scale economic damage to agricultural crops and pastures. Understanding the regional-scale and long-term dynamics is a prerequisite to develop effective control and preventive management strategies. In this study, we used a 32-year locust survey database to uncover the relationship between historical bioclimatic variables and spatial seasonal outbreaks by developing two machine learning species distribution models (SDMs), random forest and boosted regression trees. The explanatory variables were ranked by contribution to the generated models. The bio-climate models were then projected into a future climate change scenario (RCP8.5) using downscaled 34 global climate models (GCMs) to assess how climate change may alter APL seasonal distribution patterns in eastern Australia. Our results show that the model for the distribution of spring outbreaks performed better than those for summer and autumn, based on statistical evaluation criteria. The spatial models of seasonal outbreaks indicate that the areas subject to APL outbreaks were likely to decrease in all seasons. Multi-GCM ensemble means show the largest decrease in area was for spring outbreaks, reduced by 93-94% by 2071-2090, while the area of summer outbreaks decreased by 78-90%, and 67-74% for autumn outbreaks. The bioclimatic variables could explain 78-98% outbreak areas change. This study represents an important step toward the assessment of the effects of the changing climate on locust outbreaks and can help inform future priorities for regional mitigation efforts in the context of global climate change in eastern Australia.


Subject(s)
Climate Change , Grasshoppers/physiology , Models, Theoretical , Animal Distribution , Animals , Australia , Crops, Agricultural , Seasons
2.
J Insect Physiol ; 70: 1-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25158025

ABSTRACT

The Australian plague locust Chortoicetes terminifera (Walker) exhibits facultative embryonic diapause during autumn. To approximate natural photoperiod changes during late summer and autumn, locust nymphs were reared under different total declines in laboratory photophase (-0.5, -0.75, -1.0, -1.25, -1.5, -1.75, -2 h each lowered in 15 min steps) in a 24 h photoperiod to quantify any effect on the subsequent production of diapause eggs. Induction of diapause eggs was significantly affected by accumulated photoperiod decline experienced by the parental generation throughout all development stages from mid-instar nymph to fledgling adult. The incidence of embryonic diapause ranged from nil at -0.5 h to 86.6% diapause at -2 h. Continued declines in photoperiod for post-teneral locusts (transitioned from -1h until fledging to -1.75 h) produced a further increase in the proportion of diapause eggs. The results were unaffected by time spent at any given photoperiod, despite a previously indicated maximal inductive photoperiod of 13.5h being used as the mid-point of all treatments. Implications for the seasonal timing processes of photoperiodism in C. terminifera, which has a high migratory capacity and a latitudinal cline in the timing of diapause egg production across a broad geographic range, are discussed.


Subject(s)
Diapause, Insect/radiation effects , Grasshoppers/radiation effects , Animals , Grasshoppers/embryology , Grasshoppers/growth & development , Nymph/radiation effects , Photoperiod , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...