Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37261561

ABSTRACT

Pit building antlions Euroleon nostras have been submitted to artificial cues in order to delineate their faculty to localize a prey. Series of propagating pulses in sand have been created from an extended source made of 10 piezoelectric transducers equally spaced on a line and located at a large distance from the pit. The envelope of each pulse encompasses six oscillations at a carrier frequency of 1250 Hz and up to eight oscillations at 1666 Hz. In one set of experiments, the first wave front is followed by similar wave fronts and the antlions respond to the cue by throwing sand in the opposite direction of the wave front propagation direction. In another set of experiments, the first wave front is randomly spatially structured while the propagation of the wave fronts inside the envelope of the pulse are not. In that case, the antlions respond less to the cue by throwing sand, and when they do, their sand throwing is more randomly distributed in direction. The finding shows that the localization of vibration signal by antlions are based on the equivalent for hearing animals of interaural time difference in which the onset has more significance than the interaural phase difference.


Subject(s)
Insecta , Sand , Animals , Larva/physiology , Insecta/physiology , Predatory Behavior/physiology , Cues
2.
J Exp Biol ; 223(Pt 15)2020 07 31.
Article in English | MEDLINE | ID: mdl-32561631

ABSTRACT

Pit-building antlion larvae are predators that construct pitfall traps in fine sand. We used three-dimensional laser scanning and geometric morphometrics to reveal the shape of antlion pits of two antlion species, analysed the particle size composition of sands from the different natural habitats, and measured the slope angles of the pits of the two species. In most antlions, the pits are structured as a simple inverted cone, as in Myrmeleon hyalinus, studied here. The other antlion studied, Cueta lineosa, constructs a unique pit composed of two inverted truncated cones inserted into one another, which feature substantially steeper walls than the pits of any other antlion studied to date. Pit stability depends on the slope inclination, which oscillates between the maximum angle of stability and the angle of repose. The angles in C. linosa substrates were larger than those in M. hyalinus substrates. One reason for the steeper walls is the greater proportion of fine sand in the natural sand inhabited by C. lineosa However, video-recording revealed that both the natural sand of C. lineosa and the finest sand tested had a higher maximum angle of stability than any of the other substrates studied here. Furthermore, experiments with pits built in different substrates revealed that the shape of the pit is variable and depends on the structure of the sand. Myrmeleonhyalinus displayed a more flexible pit construction behaviour than C. lineosa The present demonstration of such differences in pit characteristics contributes to understanding how these two species co-exist in the same habitat.


Subject(s)
Insecta , Sand , Animals , Ecosystem , Larva , Predatory Behavior
3.
Sci Rep ; 10(1): 5299, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210352

ABSTRACT

The Deliblato Sands Special Nature Reserve (DSSNR; Vojvodina, Serbia) is facing a fast successional process. Open sand steppe habitats, considered as regional biodiversity hotspots, have drastically decreased over the last 25 years. This study combines multi-temporal and -spectral remotely sensed data, in-situ sampling techniques and geospatial modelling procedures to estimate and predict the potential development of open habitats and their biota from the perspective of antlions (Neuroptera, Myrmeleontidae). It was confirmed that vegetation density increased in all parts of the study area between 1992 and 2017. Climate change, manifested in the mean annual precipitation amount, significantly contributes to the speed of succession that could be completed within a 50-year period. Open grassland habitats could reach an alarming fragmentation rate by 2075 (covering 50 times less area than today), according to selected global climate models and emission scenarios (RCP4.5 and RCP8.5). However, M. trigrammus could probably survive in the DSSNR until the first half of the century, but its subsequent fate is very uncertain. The information provided in this study can serve for effective management of sand steppes, and antlions should be considered important indicators for conservation monitoring and planning.

4.
Sci Rep ; 9(1): 9121, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235705

ABSTRACT

The European cave spider, Meta menardi, is a representative of the troglophiles, i.e. non-strictly subterranean organisms. Our aim was to interpret the cytological results from an ecological perspective, and provide a synthesis of the hitherto knowledge about M. menardi into a theory of key features marking it a troglophile. We studied ultrastructural changes of the midgut epithelial cells in individuals spending winter under natural conditions in caves, using light microscopy and TEM. The midgut diverticula epithelium consisted of secretory cells, digestive cells and adipocytes. During winter, gradual vacuolization of some digestive cells appeared, and some necrotic digestive cells and necrotic adipocytes appeared. This cytological information completes previous studies on M. menardi starved under controlled conditions in the laboratory. In experimental starvation and natural winter conditions, M. menardi gradually exploit reserve compounds from spherites, protein granules and through autophagy, and energy-supplying lipids and glycogen, as do many overwintering arthropods. We found no special cellular response to living in the habitat. Features that make it partly adapted to the subterranean habitat include starvation hardiness as a possible preadaptation, an extremely opportunistic diet, a partly reduced orb, tracking and capturing prey on bare walls and partly reduced tolerance to below-zero temperatures.


Subject(s)
Adaptation, Physiological , Ecosystem , Spiders/physiology , Acclimatization , Animals , Female , Male , Seasons
5.
Eur J Protistol ; 60: 60-67, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28662493

ABSTRACT

Gregarine apicomplexans are unicellular organisms that infect invertebrate hosts in marine, freshwater and terrestrial habitats. The largest group of invertebrates infested on land is the insects. The insect order Psocoptera (booklice) has recently gained wider interest due to specimens occurring in stored food products and therefore being considered pest organisms. Biological control agents are often used to eliminate pest organisms. In this study we examined the psocid Dorypteryx domestica, an invasive psocid species that is spreading all over the world. We were able to isolate and describe a new gregarine species (Enterocystis dorypterygis sp. n.) infecting D. domestica. The trophozoites are panduri- or pyriform and their association/syzygy is caudo-frontal. The surface is inscribed by longitudinal epicytic folds covering the complete cell. Phylogenetic analyses of the SSU rDNA gene revealed an only weakly supported relationship with two Gregarina species G. ormieri and G. basiconstrictonea, both from tenebrionid beetles. Gregarines have been proposed to have some potential as biological control agents for several insects. Identifying the gregarine species infecting pest organisms like psocids is a first step and prerequisite for the probable utilization of these parasites as biological control agents in the future.


Subject(s)
Apicomplexa/classification , Apicomplexa/physiology , Insecta/parasitology , Animals , Apicomplexa/genetics , Apicomplexa/ultrastructure , DNA, Ribosomal/genetics , Phylogeny , Species Specificity
6.
Zootaxa ; 3641: 491-500, 2013.
Article in English | MEDLINE | ID: mdl-26287102

ABSTRACT

Morphology and behaviour of third instar larvae of the Holomediterranean antlion species Myrmecaelurus trigranunus (Pallas) are described. Larvae are facultative pit-builders, they either ambush their prey at the surface, or dig pitfall traps that prey fall in to. Dark brown spots on dorsal and ventral sides of the head and on dorsal side of the thorax are characteristic of the larvae. Eye tubercles are not prominent. Jaws are equipped with long bristles, campaniform sensilla, sensilla coeloconica, and digitiform sensilla. A unique feature is the shape of the tips of all three teeth that is screw-like with a polyhedral surface. The body surface is covered with longitudinally grooved bristles and plumose hairs. On the tip of the antennae and on terminal and subterminal parts of labial palps sensilla basiconica occur. On the 9th abdominal segment there are two bulges, each of them bearing four digging bristles. Non-prominent eye tubercles and numerous mandibular bristles are morphological traits of pit-builders. Most of the behavioural traits are related to pit builders, whereas forward movement, waiting for prey without a pit and frequent changing of ambush location are traits of non-pit builders.


Subject(s)
Catfishes/classification , Insecta/classification , Larva/anatomy & histology , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Catfishes/anatomy & histology , Catfishes/growth & development , Female , Insecta/anatomy & histology , Insecta/growth & development , Larva/classification , Larva/growth & development , Male , Organ Size
7.
Micron ; 43(5): 651-65, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22236559

ABSTRACT

We analysed structural differences between midgut epithelial cells of fed instar antlions' larvae Euroleon nostras and starved ones. In starved larvae the presence of autophagolysosome-like structures was observed, which are characteristic structures associated with autophagy. The results presented here provide insight supporting the role of autophagy as a cell survival mechanism for the periods of food deprivation. Additional structural changes in the cytoplasm were seen in the spherites. The ultrastructure and chemical composition of spherites in the midgut epithelial cells of first, second and third instar larvae were observed with light microscopy and transmission electron microscopy (TEM). A detailed characterization of the elemental composition of the spherites was studied using analytical electron microscopy; a combination of energy dispersive X-ray spectroscopy (EDXS), electron energy-loss spectroscopy (EELS) and energy filtering TEM (EFTEM) was applied. The structure and elemental composition of the spherites changed during the period of larval life. Moreover, changes in chemical composition were found between spherites from fed and starved E. nostras. In fed first instar larvae, the spherites contained an organic matrix, composed of C, N and O. In this matrix, P, Cl, Ca and Fe were detected. In starved first instar larvae, only C, N and P were present. The spherites of fed second instar larvae were rich in organic and inorganic elements and were composed of C, N, O, Na, Mg, P, S, Cl, K, Ca, Mn, Fe and Zn. In starved second instar larvae, the chemical elements N, O, P, Ca and Fe were found. In fed third instar larvae, the spherites contained C, N, O, Na, Mg, P, Cl, K, Ca, Mn, Fe, Co and Zn. In starved third larvae, C, O, Si, Ca, and Fe were detected. Generally, the spherites are exploited in starved larvae. These results suggest that the elemental supply of spherites may provide crucial support for physiological processes during starvation periods amongst E. nostras instar larvae. In some cases in fed second and fed third instar larvae, spherites were seen in the lumen of the midgut. Such spherites could serve as reservoirs for nontoxic waste material that cannot be metabolized.


Subject(s)
Digestive System/ultrastructure , Epithelial Cells/ultrastructure , Insecta/anatomy & histology , Insecta/physiology , Animals , Autophagy/physiology , Digestive System/chemistry , Digestive System/metabolism , Epithelial Cells/chemistry , Epithelial Cells/physiology , Insecta/chemistry , Larva , Microscopy, Electron, Transmission , Spectrometry, X-Ray Emission , Spectroscopy, Electron Energy-Loss , Starvation/metabolism
8.
Microsc Res Tech ; 75(4): 397-407, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21898669

ABSTRACT

This study presents an application of analytical electron microscopy in biology to investigate the chemical composition of the spherites and to elucidate the importance of these methods in the life sciences. The structure of the spherites in the midgut cells of first, second, and third instar larvae Euroleon nostras was investigated by a combination of transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), electron energy-loss spectroscopy (EELS), and energy filtering TEM (EFTEM). The structure and chemical composition of the spherites changed during the metamorphosis. In first larvae, the spherites are composed of amorphous, flocculent material, containing C, N, and O. In second larvae and third ones, the spherites have concentric layers of alternating electron-dense and electron-lucent material. In second larvae, Si, P, Ca, and Fe are accumulated in the spherite organic matrix, composed of C, N, and O. In the spherites of third larvae, additionally Al was found. Therefore, the spherites are thought to store organic compounds in all three larval stages of E. nostras and additionally inorganic compounds in second and third ones. In first larvae, spherites are present in the midgut cells; in second and third larvae, they are present in the cells of the midgut and in its lumen. It could be suggested that the spherites might be involved in the regulation of the appropriate mineral composition of the internal environment and could serve as the accumulation site of nontoxic waste materials that cannot be metabolized.


Subject(s)
Insecta/ultrastructure , Animals , Gastrointestinal Tract/chemistry , Gastrointestinal Tract/ultrastructure , Insecta/chemistry , Insecta/physiology , Larva/chemistry , Larva/ultrastructure , Microscopy, Electron, Transmission/methods , Spectrometry, X-Ray Emission
9.
Zoology (Jena) ; 111(1): 2-8, 2008.
Article in English | MEDLINE | ID: mdl-18032004

ABSTRACT

Pit-building antlion Euroleon nostras constructs efficient traps in sand to catch its prey. The predator is known to react to substrate vibrations produced by movements of its prey outside the pit with sand-tossing behaviour but it has not yet been ascertained if this reaction is directed towards the prey. The accuracy of the sand-tossing response in the presence of four prey species was measured using a video recording method. The sand-tossing angle was highly positively correlated with the prey angle. Sand tossing was most frequently elicited when prey was on the posterior sand surface. Covering the larval photoreceptors did not influence the antlion's localizing behaviour.


Subject(s)
Insecta/physiology , Predatory Behavior/physiology , Vibration , Animals , Larva , Orientation/physiology , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...