Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 290(2011): 20231900, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37964529

ABSTRACT

Vector-borne pathogens, many of which cause major suffering worldwide, often circulate in diverse wildlife communities comprising multiple reservoir host and/or vector species. However, the complexities of these systems make it challenging to determine the contributions these different species make to transmission. We experimentally manipulated transmission within a natural multihost-multipathogen-multivector system, by blocking flea-borne pathogen transmission from either of two co-occurring host species (bank voles and wood mice). Through genetic analysis of the resulting infections in the hosts and vectors, we show that both host species likely act together to maintain the overall flea community, but cross-species pathogen transmission is relatively rare-most pathogens were predominantly found in only one host species, and there were few cases where targeted treatment affected pathogens in the other host species. However, we do provide experimental evidence of some reservoir-spillover dynamics whereby reductions of some infections in one host species are achieved by blocking transmission from the other host species. Overall, despite the apparent complexity of such systems, we show there can be 'covert simplicity', whereby pathogen transmission is primarily dominated by single host species, potentially facilitating the targeting of key hosts for control, even in diverse ecological communities.


Subject(s)
Siphonaptera , Animals , Mice , Arvicolinae , Host Specificity , Animals, Wild , Insect Vectors
2.
Int J Parasitol ; 48(9-10): 785-792, 2018 08.
Article in English | MEDLINE | ID: mdl-29920254

ABSTRACT

Coinfections with parasitic helminths and microparasites are highly common in nature and can lead to complex within-host interactions between parasite species which can cause negative health outcomes for humans, and domestic and wild animals. Many of these negative health effects worsen with increasing parasite burdens. However, even though many studies have identified several key factors that determine worm burdens across various host systems, less is known about how the immune response interacts with these factors and what the consequences are for the outcome of within-host parasite interactions. We investigated two interacting gastrointestinal parasites of wild wood mice, Heligmosomoides polygyrus (nematode) and Eimeria spp. (coccidia), in order to investigate how host demographic factors, coinfection and the host's immune response affected parasite burdens and infection probability, and to determine what factors predict parasite-specific and total antibody levels. We found that antibody levels were the only factors that significantly influenced variation in both H. polygyrus burden and infection probability, and Eimeria spp. infection probability. Total faecal IgA was negatively associated with H. polygyrus burden and Eimeria spp. infection, whereas H. polygyrus-specific IgG1 was positively associated with H. polygyrus infection. We further found that the presence of Eimeria spp. had a negative effect on both faecal IgA and H. polygyrus-specific IgG1. Our results show that even in the context of natural demographic and immunological variation amongst individuals, we were able to decipher a role for the host humoral immune response in shaping the within-host interaction between H. polygyrus and Eimeria spp.


Subject(s)
Coccidiosis/veterinary , Eimeria/immunology , Murinae/parasitology , Nematospiroides dubius/immunology , Rodent Diseases/parasitology , Strongylida Infections/veterinary , Animals , Antibodies, Helminth/blood , Antibodies, Protozoan/blood , Coccidiosis/immunology , Coccidiosis/parasitology , Coinfection , Eimeria/isolation & purification , Nematospiroides dubius/isolation & purification , Rodent Diseases/blood , Rodent Diseases/immunology , Strongylida Infections/blood , Strongylida Infections/immunology
3.
J Anim Ecol ; 85(6): 1442-1452, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27380876

ABSTRACT

Many parasites infect multiple sympatric host species, and there is a general assumption that parasite transmission between co-occurring host species is commonplace. Such between-species transmission could be key to parasite persistence within a disease reservoir and is consequently an emerging focus for disease control. However, while a growing body of theory indicates the potential importance of between-species transmission for parasite persistence, conclusive empirical evidence from natural communities is lacking, and the assumption that between-species transmission is inevitable may therefore be wrong. We investigated the occurrence of between-species transmission in a well-studied multihost parasite system. We identified the flea-borne Bartonella parasites infecting sympatric populations of Apodemus sylvaticus (wood mice) and Myodes glareolus (bank voles) in the UK and confirmed that several Bartonella species infect both rodent species. However, counter to previous knowledge, genetic characterization of these parasites revealed covert host specificity, where each host species is associated with a distinct assemblage of genetic variants, indicating that between-species transmission is rare. Limited between-species transmission could result from rare encounters between one host species and the parasites infecting another and/or host-parasite incompatibility. We investigated the occurrence of such encounter and compatibility barriers by identifying the flea species associated with each rodent host, and the Bartonella variants carried by individual fleas. We found that the majority of fleas were host-generalists but the assemblage of Bartonella variants in fleas tended to reflect the assemblage of Bartonella variants in the host species they were collected from, thus providing evidence of encounter barriers mediated by limited between-species flea transfer. However, we also found several fleas that were carrying variants never found in the host species from which they were collected, indicating some degree of host-pathogen incompatibility when barriers to encounter are overcome. Overall, these findings challenge our default perceptions of multihost parasite persistence, as they show that despite considerable overlaps in host species ecology, separate populations of the same parasite species may circulate and persist independently in different sympatric host species. This questions our fundamental understanding of endemic transmission dynamics and the control of infection within natural reservoir communities.


Subject(s)
Arvicolinae , Bartonella Infections/veterinary , Insect Vectors/physiology , Murinae , Rodent Diseases/epidemiology , Siphonaptera/physiology , Animals , Bartonella/classification , Bartonella/genetics , Bartonella/physiology , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , DNA, Bacterial/genetics , England/epidemiology , Host Specificity , Host-Parasite Interactions , Insect Vectors/classification , Insect Vectors/microbiology , Rodent Diseases/microbiology , Sequence Analysis, DNA/veterinary , Siphonaptera/classification , Siphonaptera/microbiology
4.
BMC Microbiol ; 15: 61, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25887119

ABSTRACT

BACKGROUND: Within-host microbial communities and interactions among microbes are increasingly recognized as important factors influencing host health and pathogen transmission. The microbial community associated with a host is indeed influenced by a complex network of direct and indirect interactions between the host and the lineages of microbes it harbors, but the mechanisms are rarely established. We investigated the within-host interactions among strains of Borrelia burgdorferi, the causative agent of Lyme disease, using experimental infections in mice. We used a fully crossed-design with three distinct strains, each group of hosts receiving two sequential inoculations. We used data from these experimental infections to assess the effect of coinfection on bacterial dissemination and fitness (by measuring the transmission of bacteria to xenodiagnostic ticks) as well as the effect of coinfection on host immune response compared to single infection. RESULTS: The infection and transmission data strongly indicate a competitive interaction among B. burgdorferi strains within a host in which the order of appearance of the strain is the main determinant of the competitive outcome. This pattern is well described by the classic priority effect in the ecological literature. In all cases, the primary strain a mouse was infected with had an absolute fitness advantage primarily since it was transmitted an order of magnitude more than the secondary strain. The mechanism of exclusion of the secondary strain is an inhibition of the colonization of mouse tissues, even though 29% of mice showed some evidence of infection by secondary strain. Contrary to expectation, the strong and specific adaptive immune response evoked against the primary strain was not followed by production of immunoglobulins after the inoculation of the secondary strain, neither against strain-specific antigen nor against antigens common to all strains. Hence, the data do not support a major role of the immune response in the observed priority effect. CONCLUSION: The strong inhibitory priority effect is a dominant mechanism underlying competition for transmission between coinfecting B. burgdorferi strains, most likely through resource exploitation. The observed priority effect could shape bacterial diversity in nature, with consequences in epidemiology and evolution of the disease.


Subject(s)
Antibiosis , Borrelia burgdorferi/growth & development , Coinfection/microbiology , Lyme Disease/microbiology , Animals , Borrelia burgdorferi/immunology , Borrelia burgdorferi/physiology , Coinfection/immunology , Disease Models, Animal , Female , Lyme Disease/immunology , Mice, Inbred C3H , Ticks/microbiology
5.
Oecologia ; 174(4): 1097-105, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24292795

ABSTRACT

Oxidative stress occurs when the production of reactive oxygen species (ROS) by an organism exceeds its capacity to mitigate the damaging effects of the ROS. Consequently, oxidative stress hypotheses of ageing argue that a decline in fecundity and an increase in the likelihood of death with advancing age reported at the organism level are driven by gradual disruption of the oxidative balance at the cellular level. Here, we measured erythrocyte resistance to oxidative stress in the same individuals over several years in two free-living bird species with contrasting life expectancy, the great tit (known maximum life expectancy is 15.4 years) and the Alpine swift (26 years). In both species, we found evidence for senescence in cell resistance to oxidative stress, with patterns of senescence becoming apparent as subjects get older. In the Alpine swift, there was also evidence for positive selection on cell resistance to oxidative stress, the more resistant subjects being longer lived. The present findings of inter-individual selection and intra-individual deterioration in cell oxidative status at old age in free-living animals support a role for oxidative stress in the ageing of wild animals.


Subject(s)
Aging , Birds/physiology , Cellular Senescence , Erythrocytes/physiology , Oxidative Stress , Animals , Female , Life Expectancy , Male , Reactive Oxygen Species
6.
Vector Borne Zoonotic Dis ; 13(4): 203-14, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23428088

ABSTRACT

Vaccinating wildlife is becoming an increasingly popular method to reduce human disease risks from pathogens such as Borrelia burgdorferi, the causative agent of Lyme disease. To successfully limit human disease risk, vaccines targeting the wildlife reservoirs of B. burgdorferi must be easily distributable and must effectively reduce pathogen transmission from infected animals, given that many animals in nature will be infected prior to vaccination. We assessed the efficacy of an easily distributable oral bait vaccine based on the immunogenic outer surface protein A (OspA) to protect uninfected mice from infection and to reduce transmission from previously infected white-footed mice, an important reservoir host of B. burgdorferi. Oral vaccination of white-footed mice effectively reduces transmission of B. burgdorferi at both critical stages of the Lyme disease transmission cycle. First, oral vaccination of uninfected white-footed mice elicits an immune response that protects mice from B. burgdorferi infection. Second, oral vaccination of previously infected mice significantly reduces the transmission of B. burgdorferi to feeding ticks despite a statistically nonsignificant immune response. We used the estimates of pathogen transmission to and from vaccinated and unvaccinated mice to model the efficacy of an oral vaccination campaign targeting wild white-footed mice. Projection models suggest that the effects of the vaccine on both critical stages of the transmission cycle of B. burgdorferi act synergistically in a positive feedback loop to reduce the nymphal infection prevalence, and thus human Lyme disease risk, well below what would be expected from either effect alone. This study suggests that oral immunization of wildlife with an OspA-based vaccine can be a promising long-term strategy to reduce human Lyme disease risk.


Subject(s)
Arachnid Vectors/microbiology , Bacterial Vaccines/administration & dosage , Borrelia burgdorferi/immunology , Lyme Disease/prevention & control , Rodent Diseases/prevention & control , Ticks/microbiology , Administration, Oral , Animals , Animals, Wild , Antibodies, Bacterial/blood , Antigens, Surface/genetics , Antigens, Surface/immunology , Antigens, Surface/metabolism , Arachnid Vectors/physiology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Bacterial Vaccines/metabolism , Borrelia burgdorferi/physiology , Disease Reservoirs , Enzyme-Linked Immunosorbent Assay , Female , Humans , Larva , Lipoproteins/genetics , Lipoproteins/immunology , Lipoproteins/metabolism , Lyme Disease/immunology , Lyme Disease/transmission , Models, Theoretical , Peromyscus , Prevalence , Risk Factors , Rodent Diseases/microbiology , Rodent Diseases/transmission , Ticks/physiology , Treatment Outcome
7.
Proc Biol Sci ; 279(1731): 1142-9, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-21920974

ABSTRACT

Parental effort is usually associated with high metabolism that could lead to an increase in the production of reactive oxidative species giving rise to oxidative stress. Since many antioxidants involved in the resistance to oxidative stress can also enhance immune function, an increase in parental effort may diminish the level of antioxidants otherwise involved in parasite resistance. In the present study, we performed brood size manipulation in a population of great tits (Parus major) to create different levels of parental effort. We measured resistance to oxidative stress and used a newly developed quantitative PCR assay to quantify malarial parasitaemia. We found that males with an enlarged brood had significantly higher level of malarial parasites and lower red blood cell resistance to free radicals than males rearing control and reduced broods. Brood size manipulation did not affect female parasitaemia, although females with an enlarged brood had lower red blood cell resistance than females with control and reduced broods. However, for both sexes, there was no relationship between the level of parasitaemia and resistance to oxidative stress, suggesting a twofold cost of reproduction. Our results thus suggest the presence of two proximate and independent mechanisms for the well-documented trade-off between current reproductive effort and parental survival.


Subject(s)
Disease Resistance , Malaria, Avian/immunology , Oxidative Stress , Passeriformes/parasitology , Reproduction/physiology , Animals , Antioxidants/metabolism , Female , Male , Passeriformes/immunology , Passeriformes/physiology , Reactive Oxygen Species/metabolism
8.
Int J Parasitol ; 41(13-14): 1397-402, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22056297

ABSTRACT

Previous studies addressing the importance of host gender in parasite transmission have shed light on males as the more important hosts, with the higher transmission potential of males being explained by the fact that they often harbour higher parasite loads than females. However, in some systems females are more heavily infected than males and may be responsible for driving infection under such circumstances. Using a wild population of common voles (Microtus arvalis), we showed that females were more frequently infected by the intestinal nematode Trichuris arvicolae than males (i.e. prevalence based on the presence of eggs in the faeces) and that females were shedding greater numbers of parasite eggs per gram of faeces (EPG) than males. By applying an anthelmintic treatment to either male or female voles, we demonstrated that treating females significantly reduced parasite burdens (i.e. prevalence and EPG) of both male and female hosts, while treating males only reduced parasite burden in males. These findings indicate that in this female-biased infection system females play a more important role than males in driving the dynamics of parasite transmission.


Subject(s)
Anthelmintics/administration & dosage , Arvicolinae , Gastrointestinal Tract/parasitology , Rodent Diseases/parasitology , Rodent Diseases/transmission , Trichuriasis/transmission , Trichuriasis/veterinary , Trichuris/physiology , Animals , Arvicolinae/parasitology , Female , Male , Parasite Load , Rodent Diseases/drug therapy , Species Specificity , Trichuriasis/drug therapy , Trichuriasis/parasitology , Trichuris/drug effects , Trichuris/isolation & purification
9.
Ecology ; 89(9): 2584-93, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18831179

ABSTRACT

Major life history traits, such as fecundity and survival, have been consistently demonstrated to covary positively in nature, some individuals having more resources than others to allocate to all aspects of their life history. Yet, little is known about which resources (or state variables) may account for such covariation. Reactive oxygen species (ROS) are natural by-products of metabolism and, when ROS production exceeds antioxidant defenses, organisms are exposed to oxidative stress that can have deleterious effects on their fecundity and survival. Using a wild, long-lived bird, the Alpine Swift (Apus melba), we examined whether individual red cell resistance to oxidative stress covaried with fecundity and survival. We found that males that survived to the next breeding season tended to be more resistant to oxidative stress, and females with higher resistance to oxidative stress laid larger clutches. Furthermore, the eggs of females with low resistance to oxidative stress were less likely to hatch than those of females with high resistance to oxidative stress. By swapping entire clutches at clutch completion, we then demonstrated that hatching failure was related to the production of low-quality eggs by females with low resistance to oxidative stress, rather than to inadequate parental care during incubation. Although male and female resistance to oxidative stress covaried with age, the relationships among oxidative stress, survival, and fecundity occurred independently of chronological age. Overall, our study suggests that oxidative stress may play a significant role in shaping fecundity and survival in the wild. It further suggests that the nature of the covariation between resistance to oxidative stress and life history traits is sex specific, high resistance to oxidative stress covarying primarily with fecundity in females and with survival in males.


Subject(s)
Fertility/physiology , Oxidative Stress/physiology , Songbirds/physiology , Animals , Longevity/physiology
10.
J Exp Biol ; 210(Pt 20): 3571-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17921158

ABSTRACT

Abiotic factors including thermal stress are suggested to exert constrains on sexual ornaments through trade-offs between sexual displays and physiological functions related to self-maintenance. Given the health properties of carotenoid pigments, carotenoid-based ornaments offer a relevant context in which to investigate the effect of environmental stress, such as ambient temperature, on the production and maintenance of secondary sexual traits and, also, to explore the proximate mechanisms shaping their expression. In this study, we exposed male zebra finches (Taeniopygia guttata) to environmental stress by exposing them to two temperature regimes (6 and 26 degrees C) over a 4 week period. Simultaneously, half of the males in each temperature group were supplemented with carotenoids, whereas the other half were not. The expression of a carotenoid-based sexual trait (bill colour) and the amount of circulating carotenoids were assessed before and at the end of the experiment. Carotenoid-supplemented males developed a redder bill, but the effect of supplementation was reduced under cold exposure. However, we found evidence that birds facing a cold stress were carotenoid limited, since supplemented males developed redder bills than the non-supplemented ones. Interestingly, while cold-exposed and non-supplemented males developed duller bills, they circulated a higher amount of carotenoids at the end of the experiment compared to the pre-experimental values. Together, these results suggest that ambient temperature might contribute to the modulation of the expression of carotenoid-based ornaments. Our findings suggest that carotenoids are a limiting resource under cold exposure and that they might be prioritized for self-maintenance at the expense of the ornament. The physiological functions related to self-maintenance that might have benefited from carotenoid saving are discussed.


Subject(s)
Carotenoids/metabolism , Cold Temperature , Finches/physiology , Quantitative Trait, Heritable , Sex Characteristics , Animals , Beak , Body Weight , Feeding Behavior , Male , Pigmentation
11.
J Anim Ecol ; 76(4): 703-10, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17584376

ABSTRACT

1. Sex differences in levels of parasite infection are a common rule in a wide range of mammals, with males usually more susceptible than females. Sex-specific exposure to parasites, e.g. mediated through distinct modes of social aggregation between and within genders, as well as negative relationships between androgen levels and immune defences are thought to play a major role in this pattern. 2. Reproductive female bats live in close association within clusters at maternity roosts, whereas nonbreeding females and males generally occupy solitary roosts. Bats represent therefore an ideal model to study the consequences of sex-specific social and spatial aggregation on parasites' infection strategies. 3. We first compared prevalence and parasite intensities in a host-parasite system comprising closely related species of ectoparasitic mites (Spinturnix spp.) and their hosts, five European bat species. We then compared the level of parasitism between juvenile males and females in mixed colonies of greater and lesser mouse-eared bats Myotis myotis and M. blythii. Prevalence was higher in adult females than in adult males stemming from colonial aggregations in all five studied species. Parasite intensity was significantly higher in females in three of the five species studied. No difference in prevalence and mite numbers was found between male and female juveniles in colonial roosts. 4. To assess whether observed sex-biased parasitism results from differences in host exposure only, or, alternatively, from an active, selected choice made by the parasite, we performed lab experiments on short-term preferences and long-term survival of parasites on male and female Myotis daubentoni. When confronted with adult males and females, parasites preferentially selected female hosts, whereas no choice differences were observed between adult females and subadult males. Finally, we found significantly higher parasite survival on adult females compared with adult males. 5. Our study shows that social and spatial aggregation favours sex-biased parasitism that could be a mere consequence of an active and adaptive parasite choice for the more profitable host.


Subject(s)
Chiroptera/parasitology , Host-Parasite Interactions , Mite Infestations/veterinary , Mites/physiology , Reproduction/physiology , Adaptation, Physiological , Age Factors , Animals , Cluster Analysis , Female , Male , Mite Infestations/epidemiology , Mite Infestations/parasitology , Prevalence , Sex Factors , Species Specificity
12.
Evolution ; 60(9): 1913-24, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17089975

ABSTRACT

Optimal investment into life-history traits depends on the environmental conditions that organisms are likely to experience during their life. Evolutionary theory tells us that optimal investment in reproduction versus maintenance is likely to shape the pattern of age-associated decline in performance, also known as aging. The currency that is traded against different vital functions is, however, still debated. Here, we took advantage of a phenotypic manipulation of individual quality in early life to explore (1) long-term consequences on life-history trajectories, and (2) the possible physiological mechanism underlying the life-history adjustments. We manipulated phenotypic quality of a cohort of captive zebra finches (Taeniopygia guttata) by assigning breeding pairs to either an enlarged or a reduced brood. Nestlings raised in enlarged broods were in poorer condition than nestlings raised in reduced broods. Interestingly, the effect of environmental conditions experienced during early life extended to the age at first reproduction. Birds from enlarged broods delayed reproduction. Birds that delayed reproduction produced less offspring but lived longer, although neither fecundity nor longevity were directly affected by the experimental brood size. Using the framework of the life-table response experiment modeling, we also explored the effect of early environmental condition on population growth rate and aging. Birds raised in reduced broods tended to have a higher population growth rate, and a steeper decrease of reproductive value with age than birds reared in enlarged broods. Metabolic resources necessary to fight off the damaging effect of reactive oxygen species (ROS) could be the mechanism underlying the observed results, as (1) birds that engaged in a higher number of breeding events had a weaker red blood cell resistance to oxidative stress, (2) red blood cell resistance to oxidative stress predicted short-term mortality (but not longevity), and (3) was related with a parabolic function to age. Overall, these results highlight that early condition can have long-term effects on life-history trajectories by affecting key life-history traits such as age at first reproduction, and suggest that the trade-off between reproduction and self-maintenance might be mediated by the cumulative deleterious effect of ROS.


Subject(s)
Aging/physiology , Finches/physiology , Oxidative Stress/physiology , Animals , Biological Evolution , Female , Fertility/physiology , Longevity , Male , Phenotype
13.
Oecologia ; 147(4): 576-84, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16341888

ABSTRACT

The allocation of resources to reproduction and survival is a central question of studies of life history evolution. Usually, increased allocation to current reproduction is paid in terms of reduced future reproduction and/or decreased survival. However, the proximal mechanisms underlying the cost of reproduction are poorly understood. Recently, it has been shown that increased susceptibility to oxidative stress might be one of such proximate links between reproduction and self-maintenance. Organisms possess a range of antioxidant defenses, including endogenously produced molecules (e.g., enzymes) and compounds ingested with food (e.g., carotenoids). If reproductive effort increases the production of reactive oxygen species, the availability of antioxidant defenses may partly or fully counteract the free-radical damages. One could, therefore, expect that the trade-off between reproduction and oxidative stress is modulated by the availability of antioxidant defenses. We tested this hypothesis in zebra finches. We manipulated reproductive effort by either allowing or preventing pairs to breed. Within each breeding or non-breeding group, the availability of antioxidant compounds was manipulated by supplementing or not supplementing the drinking water with carotenoids. We found that although birds in the breeding and non-breeding groups did not differ in their resistance to oxidative stress (the breakdown of red blood cells submitted to a controlled free-radical attack), one aspect of breeding effort (i.e., the number of eggs laid by birds in both breeding and non-breeding groups) was negatively correlated with resistance to oxidative stress only in birds that did not benefit from a carotenoid-supplemented diet. This result therefore suggests that carotenoid availability can modulate the trade-off between reproduction and resistance to oxidative stress.


Subject(s)
Carotenoids/metabolism , Finches/physiology , Oviposition/physiology , Oxidative Stress/physiology , Animals , Beak , Body Weight , Carotenoids/blood , Color , Dietary Supplements , Female , Male , Reproduction/physiology , Sex Characteristics
14.
Am Nat ; 164(5): 651-9, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15540154

ABSTRACT

Carotenoid-based sexual traits are thought to be reliable indicators of male quality because they might be scarce and therefore might indicate the ability of males to gather high-quality food and because they are involved in important physiological functions (as immune enhancers and antioxidants). We performed an experiment where male and female zebra finches (Taeniopygia guttata) were provided with increasing carotenoid doses in the drinking water during 4 weeks (bill color of this species is a carotenoid-based sexual signal). Simultaneously, birds were split into two groups: one receiving weekly injections of Escherichia coli lipopolysaccharide in order to activate the immune system, the other being injected with the same volume of phosphate buffered saline. We assessed how carotenoid availability and immune activation affected the amount of circulating plasma carotenoids, the beak color, and the antioxidant defenses (assessed as the resistance of red blood cells to a controlled free radical attack). Carotenoid availability affected the amount of circulating carotenoids and beak color; both variables reached a plateau at the highest carotenoid doses. Immune activation diverted carotenoids from plasma, and this in turn affected the expression of the sexual trait. Finally, we found a positive correlation between the change in circulating carotenoids and antioxidant defenses. These results support the idea that carotenoids have important physiological properties that ensure the honesty of carotenoid-based sexual traits.


Subject(s)
Animal Communication , Antioxidants/physiology , Carotenoids/pharmacology , Finches/immunology , Immunity, Innate , Animals , Beak/anatomy & histology , Body Size , Carotenoids/blood , Color , Cues , Escherichia coli/metabolism , Female , Finches/anatomy & histology , Finches/metabolism , Immunity, Innate/drug effects , Lipopolysaccharides/pharmacology , Male , Sexual Behavior, Animal
15.
Proc Biol Sci ; 270(1525): 1691-6, 2003 Aug 22.
Article in English | MEDLINE | ID: mdl-12964996

ABSTRACT

Early nutrition has recently been shown to have pervasive, downstream effects on adult life-history parameters including lifespan, but the underlying mechanisms remain poorly understood. Damage to biomolecules caused by oxidants, such as free radicals generated during metabolic processes, is widely recognized as a key contributor to somatic degeneration and the rate of ageing. Lipophilic antioxidants (carotenoids, vitamins A and E) are an important component of vertebrate defences against such damage. By using an avian model, we show here that independent of later nutrition, individuals experiencing a short period of low-quality nutrition during the nestling period had a twofold reduction in plasma levels of these antioxidants at adulthood. We found no effects on adult external morphology or sexual attractiveness: in mate-choice trials females did not discriminate between adult males that had received standard- or lower-quality diet as neonates. Our results suggest low-quality neonatal nutrition resulted in a long-term impairment in the capacity to assimilate dietary antioxidants, thereby setting up a need to trade off the requirement for antioxidant activity against the need to maintain morphological development and sexual attractiveness. Such state-dependent trade-offs could underpin the link between early nutrition and senescence.


Subject(s)
Antioxidants/metabolism , Nutritional Status/physiology , Sexual Behavior, Animal/physiology , Songbirds/physiology , Animals , Body Weights and Measures , Female , Male , Songbirds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...