Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38947032

ABSTRACT

Hypermobile Ehlers-Danlos syndrome (hEDS) is a common heritable connective tissue disorder that lacks a known genetic etiology. To identify genetic contributions to hEDS, whole exome sequencing was performed on families and a cohort of sporadic hEDS patients. A missense variant in Kallikrein-15 (KLK15 p. Gly226Asp ) , segregated with disease in two families and genetic burden analyses of 197 sporadic hEDS patients revealed enrichment of variants within the Kallikrein gene family. To validate pathogenicity, the variant identified in familial studies was used to generate knock-in mice. Consistent with our clinical cohort, Klk15 G224D/+ mice displayed structural and functional connective tissue defects within multiple organ systems. These findings support Kallikrein gene variants in the pathogenesis of hEDS and represent an important step towards earlier diagnosis and better clinical outcomes.

2.
Pharmaceutics ; 16(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38276488

ABSTRACT

Conventionally, nanocarriers are used to regulate the controlled release of therapeutic payloads. Increasingly, they can also be designed to have an intrinsic therapeutic effect. For example, a positively charged nanocarrier can bind damage-associated molecular patterns, inhibiting toll-like receptor (TLR) pathway activation and thus modulating inflammation. These nucleic acid-binding nanomaterials (NABNs), which scavenge pro-inflammatory stimuli, exist in diverse forms, ranging from soluble polymers to nanoparticles and 2D nanosheets. Unlike conventional drugs that primarily address inflammation symptoms, these NABPs target the upstream inflammation initiation pathway by removing the agonists responsible for inflammation. Many NABNs have demonstrated effectiveness in murine models of inflammatory diseases. However, these scavengers have not been systematically studied and compared within a single setting. Herein, we screen a subset of the most potent NABNs to define their relative efficiency in scavenging cell-free nucleic acids and inhibiting various TLR pathways. This study helps interpret existing in vivo results and provides insights into the future design of anti-inflammatory nanocarriers.

SELECTION OF CITATIONS
SEARCH DETAIL
...