Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Neurol ; 266(8): 1919-1926, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31069529

ABSTRACT

BACKGROUND: Neurological disorders are clinically heterogeneous group of disorders and are major causes of disability and death. Several of these disorders are caused due to genetic aberration. A precise and confirmatory diagnosis in the patients in a timely manner is essential for appropriate therapeutic and management strategies. Due to the complexity of the clinical presentations across various neurological disorders, arriving at an accurate diagnosis remains a challenge. METHODS: We sequenced 1012 unrelated patients from India with suspected neurological disorders, using TruSight One panel. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. RESULTS: We were able to detect mutations in 197 genes in 405 (40%) cases and 178 mutations were novel. The highest diagnostic rate was observed among patients with muscular dystrophy (64%) followed by leukodystrophy and ataxia (43%, each). In our cohort, 26% of the patients who received definitive diagnosis were primarily referred with complex neurological phenotypes with no suggestive diagnosis. In terms of mutations types, 62.8% were truncating and in addition, 13.4% were structural variants, which are also likely to cause loss of function. CONCLUSION: In our study, we observed an improved performance of multi-gene panel testing, with an overall diagnostic yield of 40%. Furthermore, we show that NGS (next-generation sequencing)-based testing is comprehensive and can detect all types of variants including structural variants. It can be considered as a single-platform genetic test for neurological disorders that can provide a swift and definitive diagnosis in a cost-effective manner.


Subject(s)
Data Analysis , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Nervous System Diseases/genetics , Child , Child, Preschool , Cohort Studies , Female , Genetic Predisposition to Disease/epidemiology , Humans , India/epidemiology , Male , Multifactorial Inheritance/genetics , Mutation/genetics , Nervous System Diseases/diagnosis , Nervous System Diseases/epidemiology
2.
Am J Med Genet A ; 164A(11): 2793-801, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25252036

ABSTRACT

Mucopolysaccharidosis IV A (Morquio syndrome A, MPS IVA) is a lysosomal storage disease caused by the deficiency of N-acetylgalactosamine-6-sulfatase (GALNS). The mutation spectrum in this condition is yet to be determined in Indians. We aimed to analyze the mutations in the GALNS gene in Asian Indians with MPS IVA. All the exons and the adjacent intronic regions of the gene were amplified and sequenced in sixty-eight unrelated Indian families. We identified 136 mutant alleles comprising of 40 different mutations. We report twenty-two novel mutations that comprise of seventeen missense (p.Asn32Thr, p.Leu36Arg, p.Pro52Leu, p.Pro77Ser, p.Cys79Arg, p.His142Pro, p.Tyr191Asp, p.Asn204Thr, p.Gly188Ser, p.Phe216Ser, p.Trp230Cys, p.Ala291Ser, p.Gly317Arg, p.His329Pro, p.Arg386Ser, p.Glu450Gly, p.Cys501Ser), three splice-site variants (c.120+1G>C, c.1003-3C>G, c.1139+1G>A), one nonsense mutation (p.Gln414*) and one frameshift mutation (p.Pro420Leufs*440). Eighteen mutations have been reported earlier. Among these p.Ser287Leu (8.82%), p.Phe216Ser (7.35%), p.Asn32Thr (6.61%) and p.Ala291Ser (5.88%) were the most frequent mutations in Indian patients but were rare in the mutational profiles reported in other populations. These results indicate that the Indian patients may have a distinct mutation spectrum compared to those of other populations. Mutant alleles in exon 1, 7 and 8 accounted for 44.8% of the mutations, and sequencing of these exons initially may be a cost-effective approach in Asian Indian patients. This is the largest study on molecular analysis of patients with MPS IVA reported in the literature, and the first report from India.


Subject(s)
Chondroitinsulfatases/genetics , Mucopolysaccharidosis IV/genetics , Mutation , White People/genetics , Adolescent , Adult , Alleles , Amino Acid Substitution , Child , Child, Preschool , Chondroitinsulfatases/metabolism , Computational Biology , DNA Mutational Analysis , Enzyme Activation , Female , Gene Frequency , Gene Order , Humans , India , Infant , Male , Mucopolysaccharidosis IV/diagnosis , Polymorphism, Single Nucleotide , Pregnancy , Prenatal Diagnosis , Young Adult
3.
J Cell Biochem ; 113(10): 3122-32, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22593002

ABSTRACT

Maple Syrup Urine Disease is a rare metabolic disorder caused by reduced/absent activity of the branched chain α-Ketoacid dehydrogenase enzyme complex. Mutations in BCKDHA, BCKDHB, and DBT, that encode important subunits of the enzyme complex namely E1α, E1ß, and E2, are the primary cause for the disease. We have performed the first molecular genetic analysis of MSUD from India on nine patients exhibiting classical MSUD symptoms. BCKDHA and BCKDHB mutations were identified in four and five patients, respectively including seven novel mutations namely the BCKDHA c.1249delC, c.1312T>C, and c.1561T>A and the BCKDHB c.401T>A, c.548G>A, c.964A>G, and c.1065delT. The BCKDHB c.970C>T (p.R324X) mutation was shown to trigger nonsense mediated decay-based degradation of the transcript. Seven of the total 11 mutations resulted in perturbations in the E1α or E1ß C-termini either through altered termination or through an amino acid change; these are expected to result in disruption of E1 enzyme complex assembly. Our study has therefore revealed that BCKDHA and BCKDHB mutations might be primarily responsible for MSUD in the Indian population.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/chemistry , Maple Syrup Urine Disease/genetics , Multienzyme Complexes/chemistry , Mutation, Missense , 3' Untranslated Regions , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Amino Acid Sequence , Amino Acids/chemistry , Base Sequence , Codon, Nonsense/chemistry , Codon, Nonsense/genetics , DNA Mutational Analysis , Female , Genetic Testing , Genome, Human , Genotype , Humans , India , Infant , Infant, Newborn , Male , Maple Syrup Urine Disease/diagnosis , Molecular Sequence Data , Multienzyme Complexes/genetics , RNA Stability , Sequence Alignment , Sequence Analysis, Protein , Sequence Deletion
4.
Mol Genet Metab ; 100(1): 96-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20188615

ABSTRACT

Analysis of seven Indian phenylketonuria families has revealed four novel mutations in the phenylalanine hydroxylase gene; two affected consensus splice sequence and the 3' UTR, respectively, while the other two were single base insertion and deletion mutations, respectively. A novel 3' splice site mutation c.168-2A>G resulted in the activation of a cryptic 3' splice site that generated a premature termination codon leading to very low levels of the mutant transcript, probably due to activation of the nonsense-mediated decay (NMD) pathway. This is probably the first report of PKU caused by the activation of NMD.


Subject(s)
Phenylalanine Hydroxylase/genetics , Phenylketonurias/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Mutation , Phenylketonurias/enzymology , RNA Splice Sites , Sequence Deletion
5.
Blood Coagul Fibrinolysis ; 18(2): 113-7, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17287626

ABSTRACT

To investigate the role of methylene tetrahydrofolate reductase (MTHFR) (677 C-->T and 1298 A-->C), factor V (1691 G-->A), factor II (20210 G-->A) genetic polymorphisms and hyperhomocysteinemia in the aetiology of deep vein thrombosis (DVT) in 163 cases and 163 controls. Polymerase chain reaction-restriction fragment length polymorphism was used for genotyping, reverse-phase high-performance liquid chromatography for plasma homocysteine, and Student's t-test and Fisher exact tests were used for statistical analysis. Elevated mean plasma homocysteine levels were observed in DVT cases irrespective of gender differences. Homocysteine elevation above the 95th percentile of the control group associated with 9.4-fold and 7.6-fold increased risk for DVT in men and women, respectively. Genotyping showed the MTHFR 677CT/1298AC genotype (i.e. compound heterozygosity) is associated with 3.5-fold risk for thrombosis. The factor V Leiden mutation frequency was higher in DVT cases, but not statistically significant; however, genetic predisposition to this mutation was associated with early age of DVT onset. Factor II mutation was absent in cases and controls. Co-segregation of two or more risk factors was associated with 11.7-fold increased risk for thrombosis. This study projects that hyperhomocysteinemia and compound heterozygous state for MTHFR are independent risk factors for DVT among South Indians.


Subject(s)
Heterozygote , Hyperhomocysteinemia/complications , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Venous Thrombosis/etiology , Adult , Age of Onset , Case-Control Studies , Chromatography, High Pressure Liquid , Female , Genotype , Humans , India/epidemiology , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...