Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; 88(8): e202300186, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37392080

ABSTRACT

The development of an efficient and cost-effective material is highly desirable for electrochemical devices such as electrolyzers and supercapacitors. Especially, pseudomorphic transformations of metal-organic frameworks (MOFs)/coordination polymers (CPs) into layered double hydroxides (LDHs) materials endow well-defined porosities, high surface area, exchangeable interlayer anions and easily adjustable electronic structure that are truly required for oxygen evolution reaction (OER) and high-performance supercapacitor applications. Herein, we have prepared NiFe-LDHs of various Ni/Fe ratios via a facile room-temperature alkaline hydrolysis of NiFe-CPs precursors. Electrochemical studies reveal that the catalyst having high amount of Fe (Ni1.2 Fe1 -LDH) showed the better OER activity with a low Tafel slope (65 mV dec-1 ) in 1 M KOH. On the other hand, the catalyst containing higher amount of Ni with better layered structure (Ni11.7 Fe1 -LDH) showed high performance for supercapacitor (702 F g-1 at 0.25 A g-1 ) in 3 M KOH. Moreover, a solid-state asymmetric supercapacitor device Ni11.7 Fe1 -LDH/AC was fabricated which exhibited a specific capacitance of 18 F g-1 at a current density of 1 A g-1 . The device displayed high cycling stability with 88% of capacitance retention after 7000 cycles. The experimental findings in this work will help in the futuristic development of NiFe-LDH based electrocatalysts for the enhanced electrochemical performances.

2.
Inorg Chem ; 61(39): 15699-15710, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36123194

ABSTRACT

As the postsynthesis-processed metal-organic material-based catalysts for energy applications add additional cost to the whole process, the importance of developing synthesized usable pristine catalysts is quite evident. The present work reports a new Cu-based coordination polymer (Cu-CP) catalyst to be used in its pristine form for oxygen reduction reaction (ORR) application. The catalyst was characterized using single-crystal X-ray diffraction, field emission scanning electron microscopy, and X-ray photoemission spectroscopy. The Cu-CP exhibits admirable electrocatalytic ORR activity with an onset potential of 0.84 V versus RHE and a half wave potential of 0.69 V versus RHE. As revealed by the density functional theory-based computational mechanistic investigation of the electrocatalytic ORR process, the electrochemically reduced Cu(I) center binds to the molecular O2 through an exergonic process (ΔG = -6.8 kcal/mol) and generates the Cu(II)-O2•- superoxo intermediate. Such superoxo intermediates are frequently encountered in the catalytic cycle of the Cu-containing metalloenzymes in their O2 reduction reaction. This intermediate undergoes coupled proton and electron transfer processes to give OH- in an alkaline medium involving H2O2 as the intermediate. The electrocatalytic performance of Cu-CP remained stable even up to 3000 cycles. Overall, the newly developed Cu-CP-based electrocatalyst holds promising potential for efficient biomimetic ORR reactivity, which opens new possibilities toward the development of robust coordination polymer-based electrocatalysts.


Subject(s)
Metalloproteins , Polymers , Biomimetics , Hydrogen Peroxide , Metalloproteins/metabolism , Oxidation-Reduction , Oxygen/chemistry , Polymers/metabolism , Protons
3.
Dalton Trans ; 51(36): 13573-13590, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36000481

ABSTRACT

The sustainable energy technology is in great demand due to the depletion and the risks associated with the use of fossil fuels. Various energy technologies like regenerative fuel cells, zinc-air batteries, and overall water-splitting devices have a huge scope in the growth of green energy. The efficiency of these devices is reliant upon the multifunctional electrocatalysts, which include both bifunctional and trifunctional electrocatalysts. Among the different categories of the materials used for such multifunctional electrocatalysis, metal-organic-frameworks (MOFs) occupy a very consolidated place because of their high surface area, porosity, and many other unique physicochemical properties. However, the use of MOFs for the trifunctional electrocatalytic applications is in the budding phase and needs to be explored more. Further, most of these MOF-based trifunctional electrocatalysts are derived by pyrolyzing MOFs at high temperatures. Therefore, there is a need to develop more conductive MOFs which can be directly utilized for the trifunctional applications. In this frontier article, we present the latest reports on the MOF-based materials for trifunctional applications. The material design strategies of the MOF-based materials for trifunctional electrocatalysis have been discussed. The progressive improvements made with MOFs in electrocatalytic applications have been provided with emphasis on the structural, active site and compositional requirements. Finally, the challenges and viewpoints on the future development of the MOF-based materials for trifunctional electrocatalysis have been provided.

4.
Chemistry ; 24(25): 6586-6594, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29470843

ABSTRACT

Low cost, non-noble metal catalysts with a good oxygen reduction reaction (ORR) activity comparable to that of platinum and also having good energy storage properties are highly desirable but challenging. Several challenges are associated with the development of such materials. Herein, we demonstrate a new polycarboxyl-functionalised FeIII -based gel material, synthesised following a solvothermal method and the development of its composite (Fe3 O4 /Fe/C) by annealing at optimised temperature. The developed composite displayed excellent electrocatalytic activity for the oxygen reduction reaction with an onset potential of 0.87 V (vs. RHE) and a current density value of -5 mA cm-2 , which are comparable with commercial 20 wt % Pt/C. In addition, as one of the most desirable properties, the composite exhibits a better methanol tolerance and greater durability than Pt/C. The same material was explored as an energy storage material for supercapacitors, which showed a specific capacitance of 245 F g-1 at a current density of 1 A g-1 . It is expected that this Fe3 O4 /Fe/C composite with a disordered graphitised carbon matrix will pave a horizon for developing energy conversion and energy storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...