Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Environ Monit Assess ; 186(6): 3305-19, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24729177

ABSTRACT

The study was carried out to understand the variability in phytoplankton production (Chlorophyll a) and mesozooplankton diversity from two different shallow coastal regions of south Andaman viz. Port Blair Bay (PBB), the only real urban area among the islands and Mahatma Gandhi Marine National Park, a Marine Protected Area (MPA) at Wandoor. Seasonal sampling was carried out during the Northeast monsoon (NEM--November 2005), Intermonsoon (IM--April 2006), and Southwest monsoon (SWM--August 2006). Significant (P < 0.05) seasonal variation was observed in the environmental variables at both the regions. Higher average chlorophyll a (Chl. a) and mesozooplankton standing stock were observed at PBB compared to MPA, but the seasonal variation observed was marginal at both the study areas. Chl. a showed a steep increasing gradient from outer to the inner regions of the PBB. The number of zooplankton taxa recorded at both areas was quite similar, but marked differences were noticed in their relative contribution to the total abundance. Eventhough the Copepoda dominated at both the areas, the non-copepod taxa differed significantly between the regions. Dominance of carnivores such as siphonophores and chaetognaths were noticed at PBB, while filter feeders such as appendicularians and decapod larvae were more abundant at MPA. A total of 20 and 21 copepod families was recorded from PBB and MPA, respectively. Eleven species of chaetognaths were observed as common at both areas. Larval decapods were found to be predominant at MPA with 20 families; whereas, at PBB, only 12 families were recorded. In the light of the recent reports on various changes occurring in the coastal waters of the Andaman Islands, it is suspected that the difference in Chl. a as well as the mesozooplankton standing stock and community structure observed between the two study areas may be related to the various anthropogenic events influencing the coastal waters.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Environmental Monitoring , Zooplankton/classification , Animals , Copepoda/classification , Copepoda/growth & development , Seasons , Zooplankton/growth & development
2.
Int J Dev Neurosci ; 23(4): 375-81, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15927761

ABSTRACT

Rats were lactationally exposed to low- (0.2%) and high-level (1%) lead (Pb) from postnatal day 1 (PND1) through PND21 through the drinking water of the mother. The levels of catecholamines, epinephrine, norepinephrine and dopamine and the activity of the enzyme monoamine oxidase (MAO) were determined in the cerebellum, hippocampus and cerebral cortex in young (1-month-old) and adult (3-month-old) rats. Pb-exposure decreased the activity of mitochondrial MAO in all the brain regions in a dose-dependent manner. The synaptosomal catecholamines (epinephrine, norepinephrine and dopamine), however, increased with low level (0.2%) Pb-exposure and significantly decreased with high level (1%) Pb-exposure in both the age groups. In general, the young rats seem to be more vulnerable to Pb-neurotoxicity. These data suggest that Pb-exposure perturbs the aminergic system in the cerebral cortex, cerebellum and hippocampus and may contribute to the cognitive and behavioural impairments observed in Pb-exposed rats.


Subject(s)
Aging/metabolism , Brain/metabolism , Catecholamines/metabolism , Lead Poisoning, Nervous System, Childhood/metabolism , Mitochondria/enzymology , Monoamine Oxidase/metabolism , Synaptosomes/metabolism , Aging/drug effects , Animals , Animals, Newborn , Brain/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Developmental/drug effects , Lead/administration & dosage , Lead Poisoning, Nervous System, Childhood/etiology , Male , Mitochondria/drug effects , Rats , Rats, Wistar , Synaptosomes/drug effects , Tissue Distribution/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL