Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38854099

ABSTRACT

Medial prefrontal cortex (mPFC) and hippocampus are critical for memory retrieval, decision making and emotional regulation. While ventral CA1 (vCA1) shows direct and reciprocal connections with mPFC, dorsal CA1 (dCA1) forms indirect pathways to mPFC, notably via the thalamic Reuniens nucleus (Re). Neuroanatomical tracing has documented structural connectivity of this indirect pathway through Re however, its functional operation is largely unexplored. Here we used in vivo and in vitro electrophysiology along with optogenetics to address this question. Whole-cell patch-clamp recordings in acute mouse brain slices revealed both monosynaptic excitatory responses and disynaptic feedforward inhibition for both Re-mPFC and Re-dCA1 pathways. However, we also identified a novel biphasic excitation of mPFC by Re, but not dCA1. These early monosynaptic and late recurrent components are in marked contrast to the primarily feedforward inhibition characteristic of thalamic inputs to neocortex. Local field potential recordings in mPFC brain slices revealed that this biphasic excitation propagates throughout all cortical lamina, with the late excitation specifically enhanced by GABAAR blockade. In vivo Neuropixels recordings in head-fixed awake mice revealed a similar biphasic excitation of mPFC units by Re activation. In summary, Re output produces recurrent feed-forward excitation within mPFC suggesting a potent amplification system in the Re-mPFC network. This may facilitate amplification of dCA1->mPFC signals for which Re acts as the primary conduit, as there is little direct connectivity. In addition, the capacity of mPFC neurons to fire bursts of action potentials in response to Re input suggests that these synapses have a high gain. Significance statement: The interactions between medial prefrontal cortex and hippocampus are crucial for memory formation and retrieval. Yet, it is still poorly understood how the functional connectivity of direct and indirect pathways underlies these functions. This research explores the synaptic connectivity of the indirect pathway through the Reuniens nucleus of the thalamus using electrophysiological recordings and optogenetic manipulations. The study found that Reuniens stimulation recruits recurrent and long-lasting activity in mPFC - a phenomenon not previously recorded. This recurrent activity might create a temporal window ideal for coincidence detection and be an underlying mechanism for memory formation and retrieval.

2.
BMC Biol ; 20(1): 218, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36199089

ABSTRACT

BACKGROUND: Perineuronal nets (PNNs) are specialized extracellular matrix structures mainly found around fast-spiking parvalbumin (FS-PV) interneurons. In the adult, their degradation alters FS-PV-driven functions, such as brain plasticity and memory, and altered PNN structures have been found in neurodevelopmental and central nervous system disorders such as Alzheimer's disease, leading to interest in identifying targets able to modify or participate in PNN metabolism. The serine protease tissue-type plasminogen activator (tPA) plays multifaceted roles in brain pathophysiology. However, its cellular expression profile in the brain remains unclear and a possible role in matrix plasticity through PNN remodeling has never been investigated. RESULT: By combining a GFP reporter approach, immunohistology, electrophysiology, and single-cell RT-PCR, we discovered that cortical FS-PV interneurons are a source of tPA in vivo. We found that mice specifically lacking tPA in FS-PV interneurons display denser PNNs in the somatosensory cortex, suggesting a role for tPA from FS-PV interneurons in PNN remodeling. In vitro analyses in primary cultures of mouse interneurons also showed that tPA converts plasminogen into active plasmin, which in turn, directly degrades aggrecan, a major structural chondroitin sulfate proteoglycan (CSPG) in PNNs. CONCLUSIONS: We demonstrate that tPA released from FS-PV interneurons in the central nervous system reduces PNN density through CSPG degradation. The discovery of this tPA-dependent PNN remodeling opens interesting insights into the control of brain plasticity.


Subject(s)
Parvalbumins , Tissue Plasminogen Activator , Aggrecans/metabolism , Animals , Chondroitin Sulfate Proteoglycans/metabolism , Extracellular Matrix/metabolism , Fibrinolysin/metabolism , Interneurons/physiology , Mice , Parvalbumins/metabolism , Plasminogen/metabolism , Tissue Plasminogen Activator/metabolism
4.
Nat Commun ; 12(1): 4171, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234116

ABSTRACT

Here we report the pharmacologic blockade of voltage-gated sodium ion channels (NaVs) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of NaVs to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of NaVs. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to NaV-dependent alterations in action potential propagation, with unmyelinated axons preferentially showing reduced action potential fidelity under conditions of partial NaV block. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and action potential generation.


Subject(s)
Action Potentials/drug effects , NAV1.2 Voltage-Gated Sodium Channel/metabolism , Saxitoxin/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , Axons/drug effects , Axons/metabolism , CHO Cells , Cells, Cultured , Corpus Callosum/cytology , Corpus Callosum/drug effects , Corpus Callosum/metabolism , Cricetulus , Embryo, Mammalian , Female , Hippocampus/cytology , Male , Mice , NAV1.2 Voltage-Gated Sodium Channel/genetics , Patch-Clamp Techniques , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saxitoxin/analogs & derivatives , Saxitoxin/radiation effects , Single-Cell Analysis , Spatio-Temporal Analysis , Ultraviolet Rays , Voltage-Gated Sodium Channel Blockers/radiation effects
5.
J Neurosci ; 2021 May 27.
Article in English | MEDLINE | ID: mdl-34045309

ABSTRACT

Perineuronal net (PNN) accumulation around parvalbumin-expressing (PV) inhibitory interneurons marks the closure of critical periods of high plasticity, whereas PNN removal reinstates juvenile plasticity in the adult cortex. Using targeted chemogenetic in vivo approaches in the adult mouse visual cortex, we found that transient inhibition of PV interneurons, through metabotropic or ionotropic chemogenetic tools, induced PNN regression. Electroencephalographic recordings indicated that inhibition of PV interneurons did not elicit unbalanced network excitation. Likewise, inhibition of local excitatory neurons also induced PNN regression, whereas chemogenetic excitation of either PV or excitatory neurons did not reduce the PNN. We also observed that chemogenetically inhibited PV interneurons exhibited reduced PNN compared to their untransduced neighbors, and confirmed that single PV interneurons express multiple genes enabling individual regulation of their own PNN density. Our results indicate that PNN density is regulated in the adult cortex by local changes of network activity that can be triggered by modulation of PV interneurons. PNN regulation may provide adult cortical circuits with an activity-dependent mechanism to control their local remodeling.SIGNIFICANCE STATEMENTThe perineuronal net is an extracellular matrix, which accumulates around individual parvalbumin-expressing inhibitory neurons during postnatal development, and is seen as a barrier that prevents plasticity of neuronal circuits in the adult cerebral cortex. We found that transiently inhibiting parvalbumin-expressing or excitatory cortical neurons triggers a local decrease of perineuronal net density. Our results indicate that perineuronal nets are regulated in the adult cortex depending on the activity of local microcircuits. These findings uncover an activity-dependent mechanism by which adult cortical circuits may locally control their plasticity.

6.
J Vis Exp ; (136)2018 06 20.
Article in English | MEDLINE | ID: mdl-29985318

ABSTRACT

The cerebral cortex is composed of numerous cell types exhibiting various morphological, physiological, and molecular features. This diversity hampers easy identification and characterization of these cell types, prerequisites to study their specific functions. This article describes the multiplex single cell reverse transcription polymerase chain reaction (RT-PCR) protocol, which allows, after patch-clamp recording in slices, to detect simultaneously the expression of tens of genes in a single cell. This simple method can be implemented with morphological characterization and is widely applicable to determine the phenotypic traits of various cell types and their particular cellular environment, such as in the vicinity of blood vessels. The principle of this protocol is to record a cell with the patch-clamp technique, to harvest and reverse transcribe its cytoplasmic content, and to detect qualitatively the expression of a predefined set of genes by multiplex PCR. It requires a careful design of PCR primers and intracellular patch-clamp solution compatible with RT-PCR. To ensure a selective and reliable transcript detection, this technique also requires appropriate controls from cytoplasm harvesting to amplification steps. Although precautions discussed here must be strictly followed, virtually any electrophysiological laboratory can use the multiplex single cell RT-PCR technique.


Subject(s)
Multiplex Polymerase Chain Reaction/methods , Patch-Clamp Techniques/methods , Reverse Transcription/genetics , Transcriptome
7.
Ann Clin Transl Neurol ; 5(5): 510-523, 2018 May.
Article in English | MEDLINE | ID: mdl-29761115

ABSTRACT

OBJECTIVE: DEPDC5 was identified as a major genetic cause of focal epilepsy with deleterious mutations found in a wide range of inherited forms of focal epilepsy, associated with malformation of cortical development in certain cases. Identification of frameshift, truncation, and deletion mutations implicates haploinsufficiency of DEPDC5 in the etiology of focal epilepsy. DEPDC5 is a component of the GATOR1 complex, acting as a negative regulator of mTOR signaling. METHODS: Zebrafish represents a vertebrate model suitable for genetic analysis and drug screening in epilepsy-related disorders. In this study, we defined the expression of depdc5 during development and established an epilepsy model with reduced Depdc5 expression. RESULTS: Here we report a zebrafish model of Depdc5 loss-of-function that displays a measurable behavioral phenotype, including hyperkinesia, circular swimming, and increased neuronal activity. These phenotypic features persisted throughout embryonic development and were significantly reduced upon treatment with the mTORC1 inhibitor, rapamycin, as well as overexpression of human WT DEPDC5 transcript. No phenotypic rescue was obtained upon expression of epilepsy-associated DEPDC5 mutations (p.Arg487* and p.Arg485Gln), indicating that these mutations cause a loss of function of the protein. INTERPRETATION: This study demonstrates that Depdc5 knockdown leads to early-onset phenotypic features related to motor and neuronal hyperactivity. Restoration of phenotypic features by WT but not epilepsy-associated Depdc5 mutants, as well as by mTORC1 inhibition confirm the role of Depdc5 in the mTORC1-dependent molecular cascades, defining this pathway as a potential therapeutic target for DEPDC5-inherited forms of focal epilepsy.

SELECTION OF CITATIONS
SEARCH DETAIL
...