Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31836, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947471

ABSTRACT

Electric truck platooning offers a promising solution to extend the range of electric vehicles during long-haul operations. However, optimizing the platoon speed to ensure efficient energy utilization remains a critical challenge. The existing research on implementing data-driven solutions for truck platooning remains limited and implementing first principles solution is still a challenge. However, recognizing the resemblance of truck platoon data to a time series serves as a compelling motivation to explore suitable analytical techniques to address the problem. This paper presents a novel deep learning approach using a sequence-to-sequence encoder-decoder model to obtain the speed profile to be followed by an autonomous electric truck platoon considering various constraints such as the available state of charge (SOC) in the batteries along with other vehicles and road conditions while ensuring that the platoon is string stable. To ensure that the framework is suitable for long-haul highway operation, the model has been trained using various known highway drive cycles. Encoder-decoder models were trained and hyperparameter tuning was performed for the same. Finally, the most suitable model has been chosen for the application. For testing the entire framework, drive cycle/speed prediction corresponding to different desired SOC profiles has been presented. A case study showing the relevance of the proposed framework in predicting the drive cycle on various routes and its impact on taking critical policy decisions during the planning of electric truck platoons has also been presented. This study would help to efficiently plan the feasible routes for electric trucks considering multiple constraints such as battery capacity, expected discharge rate, charging infrastructure availability, route length/travel time, and other on-road operating conditions while also maintaining stability.

2.
Nonlinear Dyn ; 101(3): 2013-2026, 2020.
Article in English | MEDLINE | ID: mdl-32836807

ABSTRACT

World Health Organization (WHO) has declared COVID-19 a pandemic on March 11, 2020. As of May 23, 2020, according to WHO, there are 213 countries, areas or territories with COVID-19 positive cases. To effectively address this situation, it is imperative to have a clear understanding of the COVID-19 transmission dynamics and to concoct efficient control measures to mitigate/contain the spread. In this work, the COVID-19 dynamics is modelled using susceptible-exposed-infectious-removed model with a nonlinear incidence rate. In order to control the transmission, the coefficient of nonlinear incidence function is adopted as the Governmental control input. To adequately understand the COVID-19 dynamics, bifurcation analysis is performed and the effect of varying reproduction number on the COVID-19 transmission is studied. The inadequacy of an open-loop approach in controlling the disease spread is validated via numerical simulations and a robust closed-loop control methodology using sliding mode control is also presented. The proposed SMC strategy could bring the basic reproduction number closer to 1 from an initial value of 2.5, thus limiting the exposed and infected individuals to a controllable threshold value. The model and the proposed control strategy are then compared with real-time data in order to verify its efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL
...