Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(5): E992-E1001, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29339479

ABSTRACT

Bone metastasis involves dynamic interplay between tumor cells and the local stromal environment. In bones, local hypoxia and activation of the hypoxia-inducible factor (HIF)-1α in osteoblasts are essential to maintain skeletal homeostasis. However, the role of osteoblast-specific HIF signaling in cancer metastasis is unknown. Here, we show that osteoprogenitor cells (OPCs) are located in hypoxic niches in the bone marrow and that activation of HIF signaling in these cells increases bone mass and favors breast cancer metastasis to bone locally. Remarkably, HIF signaling in osteoblast-lineage cells also promotes breast cancer growth and dissemination remotely, in the lungs and in other tissues distant from bones. Mechanistically, we found that activation of HIF signaling in OPCs increases blood levels of the chemokine C-X-C motif ligand 12 (CXCL12), which leads to a systemic increase of breast cancer cell proliferation and dissemination through direct activation of the CXCR4 receptor. Hence, our data reveal a previously unrecognized role of the hypoxic osteogenic niche in promoting tumorigenesis beyond the local bone microenvironment. They also support the concept that the skeleton is an important regulator of the systemic tumor environment.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Osteoblasts/metabolism , Alleles , Amino Acid Motifs , Animals , Bone Neoplasms/secondary , Bone and Bones/metabolism , Cell Lineage , Chemokine CXCL12/blood , Disease Progression , Female , Green Fluorescent Proteins/metabolism , Hypoxia , Ligands , Mice , Mice, Transgenic , Neoplasm Metastasis , Osteoclasts/metabolism , Signal Transduction
2.
J Control Release ; 239: 82-91, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27565211

ABSTRACT

Gene-directed enzyme pro-drug therapy (GDEPT) consists of expressing, in tumor cells, a suicide gene which converts a pro-drug into cytotoxic metabolites, in situ. In a previous work, we demonstrated that the combination of the suicide gene CYP2B6TM-RED (a fusion of a triple mutant of CYP2B6 with NADPH cytochrome P450 reductase) and cyclophosphamide (CPA) constituted a powerful treatment for solid tumors. In this work, we investigated the use of mesenchymal stem cells (MSCs) as cellular vehicles for the delivery of our suicide gene. MSCs were genetically engineered ex-vivo to stably express CYP2B6TM-RED. Ex vivo and in vivo investigations showed that MSCs expressing CYP2B6TM-RED were able 1) to bioactivate CPA and produce local cytotoxic metabolites in tumor sites and 2) to destroy neighboring tumor cells through a bystander effect. Intratumoral injections of CYP2B6TM-RED-MSCs and CPA completely eradicated tumors in 33% of mice without recurrence after 6months. Rechallenge experiments demonstrated an efficient immune response. These data suggest that MSCs expressing CYP2B6TM-RED with CPA could represent a promising treatment for solid tumors to test in future clinical trials.


Subject(s)
Genes, Transgenic, Suicide/genetics , Genetic Engineering/methods , Genetic Therapy/methods , Genetic Vectors/genetics , Mesenchymal Stem Cells/physiology , Neoplasms/genetics , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Disease Models, Animal , Female , Genetic Vectors/administration & dosage , Humans , Mice , Mice, Inbred C57BL , Neoplasms/therapy
3.
PLoS One ; 8(12): e84771, 2013.
Article in English | MEDLINE | ID: mdl-24367694

ABSTRACT

Candida albicans produces a complex glycosphingolipid called phospholipomannan (PLM), which is present on the cell-wall surface of yeast and shed upon contact with host cells. The glycan moiety of PLM is composed of ß-mannosides with degrees of polymerization up to 19 in C. albicans serotype A. PLM from serotype B strains displays a twofold decrease in the length of the glycan chains. In this study we compared the proinflammatory activities of PLMs purified from C. albicans serotype A and serotype B strains and from a bmt6Δ mutant of C. albicans, whose PLM is composed of short truncated oligomannosidic chain. We found that PLMs activate caspase-1 in murine macrophage cell line J774 independent of the glycan chain length although IL-1ß secretion is more intense with long glycan chain. None of the tested PLMs stimulate ROS production, indicating that caspase-1 activation may occur through a ROS-independent pathway. On the other hand, only long-chain oligomannosides present on PLM from serotype A strain (PLM-A) are able to induce TNF-α production in macrophages, a property that is not affect by blocking endocytosis through latrunculin A treatment. Finally, we demonstrate that soluble and not cell surface-bound galectin-3, is able to potentiate PLM-A-induced TNF-α production in macrophages. PLMs from C. albicans serotype B and from bmt6∆ mutant are not able to induce TNF-α production and galectin-3 pretreatment does not interfere with this result. In conclusion, we show here that PLMs are able to evoke a proinflammatory state in macrophage, which is in part dependent on their glycosylation status. Long-glycan chains favor interaction with soluble galectin-3 and help amplify inflammatory response.


Subject(s)
Candida albicans/metabolism , Glycolipids/metabolism , Inflammation/metabolism , Macrophages/metabolism , beta-Mannosidase/metabolism , Analysis of Variance , Animals , Blotting, Western , Caspase 1/metabolism , Cell Line , Electrophoresis/methods , Galectin 3/metabolism , Mice , Polymerization , Reactive Oxygen Species/metabolism , Species Specificity , Tumor Necrosis Factor-alpha/metabolism
4.
Lung ; 188(3): 229-33, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20162289

ABSTRACT

Androgens and estrogens are known regulators of fetal and postnatal lung development, but their levels in the developing lung have never been determined. We present here, for the first time, a gas chromatography-mass spectrometry (GC/MS) quantification of dihydrotestosterone, testosterone, androstenedione, and estradiol in canalicular, saccular, and alveolar stage lungs of both sexes. Testosterone, androstenedione, and estradiol were observed in all the analyzed lung samples from gestation day (GD) 16.5 to postnatal day (PN) 30, totalizing 383 individual mice. Levels of these three steroids decreased between birth and PN 5. In contrast, dihydrotestosterone was detected only in male samples on GD 19.5, PN 0, and PN 30. A significant sex difference was observed for testosterone and androstenedione but not for estradiol. Steroid levels were also determined in skinned hind legs for comparison. Three-way analysis of variance revealed that tissue (lung or leg) had a significant effect on testosterone levels for both sexes, but not on androstenedione and estradiol levels. Low but significant testosterone and androstenedione levels were observed in all the females and in prepubertal male samples. These levels must be sufficient to induce androgen receptor activation, as suggested by our recent report showing the presence of androgen receptor in the nucleus of several lung cells in corresponding developmental ages and sexes.


Subject(s)
Androstenedione/metabolism , Dihydrotestosterone/metabolism , Estradiol/metabolism , Lung/growth & development , Lung/metabolism , Testosterone/metabolism , Androstenedione/analysis , Animals , Dihydrotestosterone/analysis , Estradiol/analysis , Female , Hindlimb , Male , Mice , Mice, Inbred BALB C , Pregnancy , Receptors, Androgen/analysis , Receptors, Androgen/metabolism , Sex Factors , Testosterone/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...