Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Org Lett ; 25(44): 7979-7983, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37910169

ABSTRACT

5,15-Bis(pyrimidin-2-ylthio)porphyrins have been synthesized. Their electrochemical oxidation leads to the formation of mono- and bis-C-N-fused thiopyrimidinium intermediates depending on the applied charge and potential. These latter undergo nucleophilic attack with water during workup that drives the ring opening of the pyrimidinium moiety. When piperidine is added before or after workup, the neutral fused porphyrinthiazin-2-amines are generated, and they exhibit a significant bathochromic shift of their Soret and Q bands.

2.
Chem Commun (Camb) ; 58(95): 13270-13273, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36373377

ABSTRACT

Electronic and steric properties of NHC ligands functionalized with porphyrins were investigated. When porphyrins are used as NHC-wingtips, nickel(II) in the macrocyle significantly improves the catalytic activity of the neighbouring NHC-Rh(I) complex in the conjugate addition of phenylboronic acid to cyclohexen-2-one.


Subject(s)
Heterocyclic Compounds , Porphyrins , Rhodium , Electronics
3.
Inorg Chem ; 61(19): 7387-7405, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35500211

ABSTRACT

The synthesis and characterization of zinc(II) meso-pyridin-2-ylthio-porphyrins are presented in this manuscript. The (electro)chemical oxidation of [5-(pyridin-2-ylthio)-10,20-bis(p-tolyl)-15-phenylporphyrinato] zinc(II) or [5,15-bis(pyridin-2-ylthio)-10,20-bis(p-tolyl)porphyrinato] zinc(II) leads to the formation of one or two C-N bond(s) by intramolecular nucleophilic attack of the peripheral thiopyridinyl fragment(s) on the neighboring ß-pyrrolic position(s) (C-N fusion reaction). In addition, the chemical oxidation of [5-(pyridin-2-ylthio)-10,20-bis(p-tolyl)porphyrinato] zinc(II), i.e., bearing one free meso position, mainly affords the meso,meso-dimer. Further stepwise electrochemical oxidation selectively produces the mono and bis C-N fused meso,meso-dimer. The resulting pyridinium derivatives exhibit important changes in their physicochemical properties (NMR, UV-vis, CV) as compared to their initial unfused precursors. Also, the X-ray crystallographic structures of three unfused monomers, one unfused meso,meso-dimer, and two C-N fused monomers are presented.


Subject(s)
Porphyrins , Crystallography, X-Ray , Magnetic Resonance Spectroscopy/methods , Oxidative Stress , Polymers , Porphyrins/chemistry , Zinc/chemistry
4.
Inorg Chem ; 60(24): 19009-19021, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34878781

ABSTRACT

Four porphyrins equipped with imidazolium rings on the para positions of their meso aryl groups were prepared and used as tetrakis(N-heterocyclic carbene) (NHC) precursors for the synthesis of porphyrin cages assembled from eight NHC-M bonds (M = Ag+ or Au+). The conformation of the obtained porphyrin cages in solution and their encapsulation properties strongly depend on the structure of the spacer -(CH2)n- (n = 0 or 1) between meso aryl groups and peripheral NHC ligands. In the absence of methylene groups (n = 0), porphyrin cages are rather rigid and the short porphyrin-porphyrin distance prevents the encapsulation of guest molecules like 1,4-diazabicyclo[2.2.2]octane (DABCO). By contrast, the presence of methylene functions (n = 1) between meso aryl groups and peripheral NHCs offers additional flexibility to the system, allowing the inner space between the two porphyrins to expand enough to encapsulate guest molecules like water molecules or DABCO. The peripheral NHC-wingtip groups also play a significant role in the encapsulation properties of the porphyrin cages.

5.
Molecules ; 26(9)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063008

ABSTRACT

The carbon-carbon cross-coupling of phenyl s-tetrazine (Tz) units at their ortho-phenyl positions allows the formation of constrained bis(tetrazines) with original tweezer structures. In these compounds, the face-to-face positioning of the central tetrazine cores is reinforced by π-stacking of the electron-poor nitrogen-containing heteroaromatic moieties. The resulting tetra-aromatic structure can be used as a weak coordinating ligand with cationic silver. This coordination generates a set of bis(tetrazine)-silver(I) coordination complexes tolerating a large variety of counter anions of various geometries, namely, PF6-, BF4-, SbF6-, ClO4-, NTf2-, and OTf-. These compounds were characterized in the solid state by single-crystal X-ray diffraction (XRD) and diffuse reflectance spectroscopy, and in solution by 1H-NMR, mass spectrometry, electroanalysis, and UV-visible absorption spectrophotometry. The X-ray crystal structure of complexes {[Ag(3)][PF6]}∞ (4) and {[Ag(3)][SbF6]}∞ (6), where 3 is 3,3'-[(1,1'-biphenyl)-2,2'-diyl]-6,6'-bis(phenyl)-1,2,4,5-tetrazine, revealed the formation of 1D polymeric chains, characterized by an evolution to a large opening of the original tweezer and a coordination of silver(I) via two chelating nitrogen atom and some C=C π-interactions. Electrochemical and UV spectroscopic properties of the original tweezer and of the corresponding silver complexes are reported and compared. 1H-NMR titrations with AgNTf2 allowed the determination of the stoichiometry and apparent stability of two solution species, namely [Ag(3)]+ and [Ag(3)2]2+, that formed in CDCl3/CD3OD 2:1 v/v mixtures.

6.
Chem Asian J ; 15(18): 2879-2885, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32687260

ABSTRACT

Di-tert-butylated-bis(phosphino)ferrocene ligands bearing phosphino substituents R (R=phenyl, cyclohexyl, iso-propyl, mesityl, or furyl) allow tuning the selective formation of Au(I) halide complexes. Thus, dinuclear linear two-coordinate, but also rare mononuclear trigonal three-coordinate and tetrahedral four-coordinate complexes were formed upon tuning of the conditions. Both Au(I) chloride and rarer Au(I) iodide complexes were synthesized, and their X-ray diffraction analysis are reported. The significance of the control of structure and nuclearity in Au(I) complexes is further illustrated herein by its strong effect on the efficiency and selectivity of gold-catalysed cycloisomerization. Cationic linear digold(I) bis(dicyclohexylphosphino) ferrocenes outperform other catalysts in the demanding regioselective cycloisomerization of enyne sulphonamides into cyclohexadienes. Conversely, tetrahedral and trigonal cationic monogold(I) complexes were found incompetent for enyne cycloaddition. We used the two-coordinate linear electron-rich Au(I) complex 2 b (R=Cy) to extend the scope of selective intramolecular cycloaddition of different 1,6-enyne sulfonylamines with high activity and excellent selectivity to the endo cyclohexadiene products.

7.
Dalton Trans ; 49(17): 5606-5617, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32285049

ABSTRACT

Two BODIPY derivatives with one (B2) and two (B3) carbazole moieties were synthesized and applied as electron-donor materials in organic photovoltaic cells (OPV). Their optical and electrochemical properties were systematically investigated. These BODIPY dyes exhibit excellent solubility in organic solvents and present high molar extinction coefficients (1.37-1.48 × 105 M-1 cm-1) in solutions with absorption maxima at 586 nm for mono-styryl groups and at 672 nm for di-styryl groups. The introduction of the styryl moieties results in a large bathochromic shift and a significant decrease in the HOMO-LUMO energy-gaps. The BODIPY dyes show relatively low HOMO energies ranging from -4.99 to -5.16 eV as determined from cyclic voltammetry measurements. Cyclic voltammetry measurements and theoretical calculations demonstrate that the frontier molecular orbital levels of these compounds match with those of PC71BM as the acceptor, supporting their application as donor materials in solution-processed small molecule bulk heterojunction (BHJ) organic solar cells. After the optimization of the active layer, B2:PC71BM and B3:PC71BM based organic solar cells showed an overall power conversion efficiency of 6.41% and 7.47%, respectively. The higher PCE of the B3-based OSC is ascribed to the more balanced charge transport and exciton dissociation, better crystallinity and molecular packing.

8.
Chem Sci ; 12(1): 253-269, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-34163594

ABSTRACT

The synthesis and characterization of a range of bis(iminophosphoranyl)phosphide (BIPP) group 4 and coinage metals complexes is reported. BIPP ligands bind group 4 metals in a pseudo fac-fashion, and the central phosphorus atom enables the formation of d0-d10 heterobimetallic complexes. Various DFT computational tools (including AIM, ELF and NCI) show that the phosphorus-metal interaction is either electrostatic (Ti) or dative (Au, Cu). A bridged homobimetallic Cu-Cu complex was also prepared and its spectroscopic properties were investigated. The theoretical analysis of the P-P bond in BIPP complexes reveals that (i) BIPP are closely related to ambiphilic triphosphenium (TP) cations; (ii) the P-P bonds are normal covalent (i.e. not dative) in both BIPP and TP.

9.
Angew Chem Int Ed Engl ; 59(3): 1149-1154, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31643125

ABSTRACT

Click chemistry at a tetrazine core is useful for bioorthogonal labeling and crosslinking. Introduced here are two new classes of doubly clickable s-aryl tetrazines synthesized by Cu-catalyzed cross-coupling. Homocoupling of o-brominated s-aryl tetrazines leads to bis(tetrazine)s structurally characterized by tetrazine cores arranged face-to-face. [N]8 π-stacking interactions are essential to the conformation. Upon inverse electron demand Diels-Alder (iEDDA) cycloaddition, the bis(tetrazine)s produce a unique staple structure. The o-azidation of s-aryl tetrazines introduces a second proximal intermolecular clickable function that leads to double click chemistry opportunities. The stepwise introduction of fluorophores and then iEDDA cycloaddition, including bioconjugation to antibodies, was achieved on this class of tetrazines. This method extends to (thio)etherification, phosphination, trifluoromethylation and the introduction of various bioactive nitrogen-based heterocycles.

10.
Chem Commun (Camb) ; 56(6): 884-887, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31850408

ABSTRACT

Four free base aminoporphyrins were synthesized in two steps via regioselective anodic nucleophilic substitution with pyridine followed by ring opening of the electrogenerated pyridinium with piperidine. The X-ray crystallographic structure of the unstable 2-aminotetraphenylporphyrin was solved. Protonation of this latter compound leads to the stable diiminium porphyrin salt.

11.
J Med Chem ; 62(9): 4456-4466, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30942581

ABSTRACT

The human genome is replete with repetitive DNA sequences that can fold into thermodynamically stable secondary structures such as hairpins and quadruplexes. Cellular enzymes exist to cope with these structures whose stable accumulation would result in DNA damage through interference with DNA transactions such as transcription and replication. Therefore, the chemical stabilization of secondary DNA structures offers an attractive way to foster DNA transaction-associated damages to trigger cell death in proliferating cancer cells. While much emphasis has been recently given to DNA quadruplexes, we focused here on three-way DNA junctions (TWJ) and report on a strategy to identify TWJ-targeting agents through a combination of in vitro techniques (TWJ-screen, polyacrylamide gel electrophoresis, fluorescence resonance energy transfer-melting, electrospray ionization mass spectrometry, dialysis equilibrium, and sulforhodamine B assays). We designed a complete workflow and screened 1200 compounds to identify promising TWJ ligands selected on stringent criteria in terms of TWJ-folding ability, affinity, and selectivity.


Subject(s)
DNA/metabolism , Small Molecule Libraries/metabolism , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/genetics , Electrophoresis, Polyacrylamide Gel , Fluorescence Resonance Energy Transfer , Humans , Ligands , Nucleic Acid Conformation , Small Molecule Libraries/pharmacology , Spectrometry, Mass, Electrospray Ionization
12.
Chemistry ; 25(11): 2803-2815, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30506743

ABSTRACT

Tame d0 phosphidotitanocene cations stabilized with a pendant tertiary phosphane arm are reported. These compounds were obtained by one-electron oxidation of d1 precursors with [Cp2 Fe][BPh4 ]. The electronic structure of these compounds was studied experimentally (EPR, UV/Vis, and NMR spectroscopy, X-ray diffraction analysis) and through DFT calculations. The theoretical analysis of the bonding situation by using the electron localization function (ELF) shows the presence of π-interactions between the phosphido ligand and Ti in the d0 complexes, whereas dπ-pπ repulsion prevents such interactions in the d1 complexes. In addition, CH-π interactions were observed in several complexes, both in solution and in the solid state, between the phosphido ligand and the phosphane arm. The d0 complexes were found to be light sensitive, and decompose through Ti-P bond homolysis to give TiIII species. A naked d0 phosphidotitanocene cation has been trapped by reaction with diphenylacetylene, yielding a Ti/P frustrated Lewis pair (FLP), which was found to be less reactive than a previously reported Zr analog.

13.
Langmuir ; 34(31): 9322-9329, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29979880

ABSTRACT

Porphyrins are functional elements of important biomolecules, whose assemblies play a central role in fundamental processes such as electron transfer, oxygen transport, enzymatic catalysis, and light harvesting. Here we report an approach to formation of porphyrin supermolecules, a particular type of nanoparticles with unusually strong noncovalent intermolecular interactions. Key differences between the supermolecules and noncovalent nanostructures described earlier are as follows. (1) Supermolecules consist of molecules of the same type without side groups promoting the self-assembly and without any spacers; no surfactant or catalyst to assist the process is needed. (2) They exhibit unusual photophysical properties and remain stable even in organic solvents. Their formation occurs under specially selected conditions at the air-water interface at room temperature. Following this route, we have formed supermolecules of magnesium porphine, a functional element of chlorophyll. The properties of these supermolecules are markedly different from those of the constituent molecules. For example, in contrast to the pink color of the monomer solution, solutions of supermolecules are transparent for visible light and absorb in the ultraviolet and near-infrared regions. We also present atomic force microscopy visualization of the porphyrin two-dimensional nanoaggregates forming at the air-water interface that were predicted in our previous works. This approach offers a guideline for the discovery of new supermolecules, including complex biological ones, and the formation of supermolecular materials with novel properties.

14.
Chem Commun (Camb) ; 54(43): 5414-5417, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29726882

ABSTRACT

The mild (electro)chemical oxidation of pyridin-2-ylthio-meso substituted Ni(ii) porphyrins affords C-N fused cationic and dicationic pyridinium-based derivatives. These porphyrins are fully characterized and the molecular structure of one of them was confirmed by X-ray crystallography. A mechanism for the intramolecular oxidative C-N coupling is proposed based on theoretical calculations and cyclic voltammetry analyses.

15.
Chem Commun (Camb) ; 53(44): 6017-6020, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28518201

ABSTRACT

A general synthesis of highly functionalized ferrocenes, which include (P,B)- and (N,B)-ambiphiles, has been developed at a multigram scale. Diastereoselective stepwise modification of di-tert-butylated ferrocenes included the unprecedented separation of electroactive species. Bulky alkyl groups on ferrocenes ensure planar chirality of ambiphiles and enforce closer proximity of antagonist Lewis functions.

16.
Chemistry ; 21(22): 8281-9, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25891408

ABSTRACT

Magnesium(II) 10-phenyl-5,15-p-ditolylporphyrin is easily and cleanly transformed by electrolysis. A nitro group is first introduced at the free meso position by anodic substitution. Hydrogenation into the amine is then carried out electrocatalytically under ambient conditions with water as a hydrogen supplier. The synthesized porphyrin under the nickel(II) form can be covalently grafted onto a platinum electrode by electrochemical reduction of the diazonium cation, generated in situ by a reaction of the nickel(II) aminoporphyrin with sodium nitrite and trifluoroacetic acid. The electrosynthesized thin film gives an electrochemical response typical of a porphyrin material. Films grown under our conditions have a maximum surface coverage of approximately 5×10(-10)  mol cm(-2). The modified electrode exhibits a reproducible electrochemical behavior and a good level of stability over potential cycling and exposition to air.


Subject(s)
Electrochemical Techniques/methods , Porphyrins/chemical synthesis , Electrochemical Techniques/instrumentation , Electrodes , Electrolysis/instrumentation , Electrolysis/methods , Nickel/chemistry , Oxidation-Reduction , Platinum/chemistry , Porphyrins/chemistry
17.
J Org Chem ; 79(14): 6424-34, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24960068

ABSTRACT

Aromatic nucleophilic substitution reaction of the nitro group of meso-nitroporphyrins with azide and various amines was achieved and represents an alternative procedure to C-N coupling reactions usually needed to obtain such meso-N-substituted porphyrins in good yields.

18.
Dalton Trans ; 43(39): 14554-64, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-24828141

ABSTRACT

The electrochemical oxidation of nickel(ii) 5,15-p-ditolyl-10-phenylporphyrin () leads to the formation of different coupling products, with the distribution depending on the nature of the solvent (CH2Cl2-CH3CN, CH2Cl2, DMF), the cell configuration (2 or 3 compartments) and the number of electrons abstracted. In a two compartment configuration (anode and cathode in the same compartment) in a CH2Cl2-CH3CN mixture, nickel(ii) 5-chloro-10,20-p-ditolyl-15-phenylporphyrin () was isolated in good yield and its mechanism of formation is proposed. Switching to the three compartment configuration, the meso-ß/meso-ß doubly fused dimer () is detected as the major product whereas in pure CH2Cl2, the singly bonded meso-ß dimer () is the major product; in both cases a significant amount of is also produced. These results are in accordance with the cyclic voltammetry analysis of measured in CH2Cl2-CH3CN and CH2Cl2 from which the voltammetric trace of is, respectively, appearing or not. In DMF the hydroxyporphyrin was detected as the major product. Furthermore, meso-functionalization of was performed by controlled potential electrolysis with triphenylphosphine as the nucleophile leading to the phosphonium substituted derivative () in good yield. Finally, unprecedented X-ray crystallographic structures of , , and are presented and their respective structural parameters compared.

19.
Inorg Chem ; 52(20): 11923-33, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24107007

ABSTRACT

Oxidative addition (OA) of organic halides to palladium(0) species is a fundamental reaction step which initiates the C-C bond formation catalytic processes typical of Pd(0)/Pd(II) chemistry. The use of structurally congested polyphosphane ligands in palladium-catalyzed C-C bond formation has generated very high turnover numbers (TONs) in topical reactions such as Heck, Suzuki, Sonogashira couplings, and direct sp(2)C-H functionalization. Herein, the OA of aryl bromides to Pd(0) complexes stabilized by ferrocenylpolyphosphane ligands L1 (tetraphosphane), L2 (triphosphane), and L3 (diphosphane) is considered. The investigation of kinetic constants for the addition of Ph-Br to Pd(0) intermediates (generated by electrochemical reduction of Pd(II) complexes coordinated by L1-L3) is reported. Thus, in the OA of halides to the Pd(0) complex coordinated by L1 the series of rate constants kapp is found (mol(-1) L s(-1)): kapp(Ph-Br) = 0.48 > kapp(ClCH2-Cl) = 0.25 ≫ kapp(p-MeC6H4-Br) = 0.08 ≈ kapp(o-MeC6H4-Br) = 0.07 ≫ kapp(Ph-Cl). Kinetic measurements clarify the influence that the presence of four, three, or two phosphorus atoms in the coordination sphere of Pd has on OA. The presence of supplementary phosphorus atoms in L1 and L2 unambiguously stabilizes Pd(0) species and thus slows down the OA of Ph-Br to Pd(0) of about 2 orders of magnitude compared to the diphosphane L3. The electrosynthesis of the complexes resulting from the OA of organic halides to [Pd(0)/L] is easily performed and show the concurrent OA to Pd(0) of the sp(3)C-Cl bond of dichloromethane solvent. The resulting unstable Pd/alkyl complex is characterized by NMR and single crystal X-ray structure. We additionally observed the perfect stereoselectivity of the OA reactions which is induced by the tetraphosphane ligand L1. Altogether, a clearer picture of the general effects of congested polydentate ligands on the OA of organic halides to Pd(0) is given.

20.
Org Lett ; 15(17): 4410-3, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23937613

ABSTRACT

Synthesis of imidazolium carboxylate compounds was efficiently achieved by electrochemical reduction of imidazolium precursors under very mild conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...