Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 65(5): 1262-1271, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29566306

ABSTRACT

A cross-sectional study was conducted to determine the species of Anaplasma spp. and estimate its prevalence in cattle of the three main cattle-producing Galapagos Islands (Santa Cruz, San Cristóbal and Isabela) using indirect PCR assays, genetic sequencing and ELISA. Ticks were also collected from cattle and scanned for 47 tick-borne pathogens in a 48 × 48 real-time PCR chip. A mixed effects logistic regression was performed to identify potential risk factors explaining Anaplasma infection in cattle. A. phagocytophilum was not detected in any of the tested animals. Genetic sequencing allowed detection of A. platys-like strains in 11 (36.7%) of the 30 Anaplasma spp.-positive samples analysed. A. marginale was widespread in the three islands with a global between-herd prevalence of 100% [89; 100]95% CI and a median within-herd prevalence of 93%. A significant association was found between A. marginale infection and age with higher odds of being positive for adults (OR = 3.3 [1.2; 9.9]95% Bootstrap CI ). All collected ticks were identified as Rhipicephalus microplus. A. marginale, Babesia bigemina, Borrelia theileri and Francisella-like endosymbiont were detected in tick pools. These results show that the Galapagos Islands are endemic for A. marginale.


Subject(s)
Anaplasma marginale/isolation & purification , Anaplasmosis/epidemiology , Cattle Diseases/epidemiology , Endemic Diseases/veterinary , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Anaplasma marginale/genetics , Animals , Babesia/genetics , Babesia/isolation & purification , Cattle , Cross-Sectional Studies , Ecuador/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary , Polymerase Chain Reaction/veterinary , Rhipicephalus/genetics
2.
New Microbes New Infect ; 11: 71-81, 2016 May.
Article in English | MEDLINE | ID: mdl-27158509

ABSTRACT

Ticks transmit more pathogens-including bacteria, parasites and viruses-than any other arthropod vector. Although the epidemiological status of many tick-borne bacteria is very well characterized, tick-borne viruses are still relatively under-studied. Recently, several novel tick-borne viruses have been isolated from human febrile illnesses following tick bites, indicating the existence of other potential new and unknown tick-borne viruses. We used high-throughput sequencing to analyse the virome of Ixodes ricinus, the main vector of tick-borne pathogens in Europe. The majority of collected viral sequences were assigned to two potentially novel Nairovirus and Phlebovirus viruses, with prevalence rates ranging from 3.95% to 23.88% in adults and estimated to be between 0.14% and 72.16% in nymphs. These viruses could not be isolated from the brains of inoculated immunocompromised mice, perhaps indicating that they are unable to infect vertebrates. Within the I. ricinus virome, we also identified contigs with >90% identity to the known Eyach virus. Initially isolated in the 1980s, this virus was indirectly associated with human disease, but had never been extensively studied. Eyach virus prevalence varied between 0.07% and 5.26% in ticks from the French Ardennes and Alsace regions. Eyach virus was successfully isolated following intracerebral inoculation of immunocompromised mice with Eyach virus-positive tick extracts. This virus was also able to multiply and persist in the blood of immunocompetent mice inoculated by intraperitoneal injection, and caused brain infections in three of nine juveniles, without any obvious deleterious effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...