Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766202

ABSTRACT

Alpha-1 antitrypsin (AAT) deficiency is the most common genetic cause of emphysema. Chymotrypsin-like Elastase 1 (CELA1) is a serine protease neutralized by AAT and is important in emphysema progression. Cela1-deficiency is protective in a murine models of AAT-deficient emphysema. KF4 anti-CELA1 antibody prevented emphysema in PPE and cigarette smoke models in wild type mice. We evaluated potential toxicities of KF4 and its ability to prevent emphysema in AAT deficiency. We found Cela1 protein expression in mouse lung, pancreas, small intestine, and spleen. In toxicity studies, mice treated with KF4 25 mg/kg weekly for four weeks showed an elevation in blood urea nitrogen and slower weight gain compared to lower doses or equivalent dose IgG. In histologic grading of tissue injury of the lung, kidney, liver, and heart, there was some evidence of liver injury with KF4 25 mg/kg, but in all tissues, injury was less than in control mice subjected to cecal ligation and puncture. In efficacy studies, KF4 doses as low as 0.5 mg/kg reduced the lung elastase activity of AAT-/- mice treated with 0.2 units of PPE. In this injury model, AAT-/- mice treated with KF4 1 mg/kg weekly, human purified AAT 60 mg/kg weekly, and combined KF4 and AAT treatment had less emphysema than mice treated with IgG 1 mg/kg weekly. However, the efficacy of KF4, AAT, or KF4 & AAT was similar. While KF4 might be an alternative to AAT replacement, combined KF4 and AAT replacement does not confer additional benefit.

2.
JCI Insight ; 9(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193533

ABSTRACT

There are no therapies to prevent emphysema progression. Chymotrypsin-like elastase 1 (CELA1) is a serine protease that binds and cleaves lung elastin in a stretch-dependent manner and is required for emphysema in a murine antisense oligonucleotide model of α-1 antitrypsin (AAT) deficiency. This study tested whether CELA1 is important in strain-mediated lung matrix destruction in non-AAT-deficient emphysema and the efficacy of CELA1 neutralization. Airspace simplification was quantified after administration of tracheal porcine pancreatic elastase (PPE), after 8 months of cigarette smoke (CS) exposure, and in aging. In all 3 models, Cela1-/- mice had less emphysema and preserved lung elastin despite increased lung immune cells. A CELA1-neutralizing antibody was developed (KF4), and it inhibited stretch-inducible lung elastase in ex vivo mouse and human lung and immunoprecipitated CELA1 from human lung. In mice, systemically administered KF4 penetrated lung tissue in a dose-dependent manner and 5 mg/kg weekly prevented emphysema in the PPE model with both pre- and postinjury initiation and in the CS model. KF4 did not increase lung immune cells. CELA1-mediated lung matrix remodeling in response to strain is an important contributor to postnatal airspace simplification, and we believe that KF4 could be developed as a lung matrix-stabilizing therapy in emphysema.


Subject(s)
Emphysema , Pulmonary Emphysema , Animals , Humans , Mice , Aging , Elastin , Pancreatic Elastase , Pulmonary Emphysema/prevention & control , Swine
3.
Sci Rep ; 13(1): 15259, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709810

ABSTRACT

Progressive emphysema often leads to end-stage lung disease. Most mouse models of emphysema are typically modest (i.e. cigarette smoke exposure), and changes over time are difficult to quantify. The tracheal porcine pancreatic elastase model (PPE) produces severe injury, but the literature is conflicted as to whether emphysema improves, is stable, or progresses over time. We hypothesized a threshold of injury below which repair would occur and above which emphysema would be stable or progress. We treated 8-week-old C57BL6 mixed sex mice with 0, 0.5, 2, or 4 activity units of PPE in 100 µL PBS and performed lung stereology at 21 and 84 days. There were no significant differences in weight gain or mouse health. Despite minimal emphysema at 21-days in the 0.5 units group (2.8 µm increased mean linear intercept, MLI), MLI increased by 4.6 µm between days 21 and 84 (p = 0.0007). In addition to larger MLI at 21 days in 2- and 4-unit groups, MLI increases from day 21 to 84 were 17.2 and 34 µm respectively (p = 0.002 and p = 0.0001). Total lung volume increased, and alveolar surface area decreased with time and injury severity. Contrary to our hypothesis, we found no evidence of alveolar repair over time. Airspace destruction was both progressive and accelerative. Future mechanistic studies in lung immunity, mechano-biology, senescence, and cell-specific changes may lead to novel therapies to slow or halt progressive emphysema in humans.


Subject(s)
Emphysema , Pulmonary Emphysema , Humans , Animals , Swine , Mice , Disease Models, Animal , Acceleration , Pancreatic Elastase
4.
Angew Chem Int Ed Engl ; 62(47): e202312514, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37768840

ABSTRACT

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.


Subject(s)
Mupirocin , Polyketide Synthases , Polyketide Synthases/metabolism , Hydroxylation , Anti-Bacterial Agents/chemistry
5.
Chronic Obstr Pulm Dis ; 10(4): 380-391, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37534975

ABSTRACT

Chymotrypsin-like elastase 1 (CELA1) is a serine protease that is neutralized by alpha-1antitrypsin (AAT) and prevents emphysema in a murine antisense oligonucleotide model of AAT-deficient emphysema. Mice with genetic ablation of AAT do not have emphysema at baseline but develop emphysema with injury and aging. We tested the role of the CELA1 gene in emphysema development in this genetic model of AAT-deficiency following tracheal lipopolysaccharide (LPS), 10 months of cigarette smoke exposure, aging, and a low-dose tracheal porcine pancreatic elastase (LD-PPE) model we developed. In this last model, we performed proteomic analysis to understand differences in lung protein composition. We were unable to show that AAT-deficient mice developed more emphysema than wild type with escalating doses of LPS. In the LD-PPE model, AAT-deficient mice developed significant and progressive emphysema from which Cela1-/- & AAT-deficient mice were protected. Cela1-/-& AAT-deficient lungs had more matrix-associated proteins than AAT-deficientlungs but also had more leukocyte-associated proteases. With cigarette smoke exposure, Cela1-/- &AAT-deficient mice had more emphysema than AAT-deficient mice but had less myeloperoxidase activity. Cela1-/-&AAT-deficient mice had less age-related airspace simplification than AAT-deficient and were comparable to wild type. While CELA1 promotes inflammation-independent emphysema progression and its absence preserves the lung matrix in multiple models of AAT-deficient emphysema, for unclear reasons Cela1 deficiency is associated with increased emphysema with cigarette smoke. While anti-CELA1 therapies could potentially be used to prevent emphysema progression in AAT deficiency after smoking cessation, an understanding of why and how cigarette smoke exacerbates emphysema in Cela1 deficiency and whether AAT replacement therapy mitigates this effect is needed first.

6.
Res Sq ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865303

ABSTRACT

Chymotrypsin-like elastase 1 ( CELA1 ) is a serine protease that is neutralized by α1-antitrypsin (AAT) and prevents emphysema in a murine antisense oligonucleotide model of AAT-deficient emphysema. Mice with genetic ablation of AAT do not have emphysema at baseline but develop emphysema with injury and aging. We tested the role of CELA1 in emphysema development in this genetic model of AAT -deficiency following tracheal lipopolysacharide (LPS), 8 months of cigarette smoke (CS) exposure, aging, and a low-dose tracheal porcine pancreatic elastase (LD-PPE) model. In this last model, we performed proteomic analysis to understand differences in lung protein composition. We were unable to show that AAT -/ - mice developed more emphysema than wild type with LPS. In the LD-PPE model, AAT -/- mice developed progressive emphysema from which Cela1 -/- &AAT -/- mice were protected. In the CS model, Cela1 -/- &AAT -/- mice had worse emphysema than AAT -/- , and in the aging model, 72-75 week-old Cela1 -/- &AAT -/- mice had less emphysema than AAT -/- mice. Proteomic analysis of AAT -/- vs. wildtype lungs in the LD-PPE model showed reduced amounts of AAT proteins and increased amounts of proteins related to Rho and Rac1 GTPases and protein oxidation. Similar analysis of Cela1 -/- &AAT -/- vs. AAT -/- lungs showed differences in neutrophil degranulation, elastin fiber synthesis, and glutathione metabolism. Thus, Cela1 prevents post-injury emphysema progression in AAT -deficiency, but it has no effect and potentially worsens emphysema in response to chronic inflammation and injury. Prior to developing anti-CELA1 therapies for AAT-deficient emphysema, an understanding of why and how CS exacerbates emphysema in Cela1 deficiency is needed.

7.
Angew Chem Int Ed Engl ; 62(3): e202213053, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36314667

ABSTRACT

Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C. The X-ray crystal structure of AbyV has been determined, which in combination with molecular dynamics simulations provides a structural framework for our functional data. This work demonstrates the power of combining selective carbon-13 labelling with NMR spectroscopy as a sensitive tool to interrogate enzyme-catalysed reactions in vitro with no need for purification.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Cytochrome P-450 Enzyme System , Cytochrome P-450 Enzyme System/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Molecular Dynamics Simulation , Secondary Metabolism
8.
Angew Chem Weinheim Bergstr Ger ; 135(47): e202312514, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38515435

ABSTRACT

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.

9.
Angew Chem Weinheim Bergstr Ger ; 135(3): e202213053, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-38516347

ABSTRACT

Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C. The X-ray crystal structure of AbyV has been determined, which in combination with molecular dynamics simulations provides a structural framework for our functional data. This work demonstrates the power of combining selective carbon-13 labelling with NMR spectroscopy as a sensitive tool to interrogate enzyme-catalysed reactions in vitro with no need for purification.

10.
Chembiochem ; 19(18): 1969-1978, 2018 09 17.
Article in English | MEDLINE | ID: mdl-29966048

ABSTRACT

The use of radiolabelled antibodies and antibody-derived recombinant constructs has shown promise for both imaging and therapeutic use. In this context, the biotin-avidin/streptavidin pairing, along with the inverse-electron-demand Diels-Alder (iEDDA) reaction, have found application in pretargeting approaches for positron emission tomography (PET). This study reports the fluorinase-mediated transhalogenation [5'-chloro-5'-deoxyadenosine (ClDA) substrates to 5'-fluoro-5'-deoxyadenosine (FDA) products] of two antibody pretargeting tools, a FDA-PEG-tetrazine and a [18 F]FDA-PEG-biotin, and each is assessed either for its compatibility towards iEDDA ligation to trans-cyclooctene or for its affinity to avidin. A protocol to avoid radiolytically promoted oxidation of biotin during the synthesis of [18 F]FDA-PEG-biotin was developed. The study adds to the repertoire of conjugates for use in fluorinase-catalysed radiosynthesis for PET and shows that the fluorinase will accept a wide range of ClDA substrates tethered at C-2 of the adenine ring with a PEGylated cargo. The method is exceptional because the nucleophilic reaction with [18 F]fluoride takes place in water at neutral pH and at ambient temperature.


Subject(s)
Biotin/chemistry , Deoxyadenosines/chemistry , Fluorine Radioisotopes/chemistry , Immunoconjugates/chemistry , Polyethylene Glycols/chemistry , Positron-Emission Tomography/methods , Bacterial Proteins/chemistry , Biotin/chemical synthesis , Cycloaddition Reaction , Cyclooctanes/chemical synthesis , Cyclooctanes/chemistry , Deoxyadenosines/chemical synthesis , Halogenation , Oxidoreductases/chemistry , Polyethylene Glycols/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Streptavidin/chemistry
11.
Plant Biotechnol J ; 5(4): 495-510, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17490448

ABSTRACT

Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit-human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB-green fluorescent protein (CTB-GFP) or interferon-GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to 5-week-old female non-obese diabetic (NOD) mice. The pancreas of CTB-Pins-treated mice showed decreased infiltration of cells characteristic of lymphocytes (insulitis); insulin-producing beta-cells in the pancreatic islets of CTB-Pins-treated mice were significantly preserved, with lower blood or urine glucose levels, by contrast with the few beta-cells remaining in the pancreatic islets of the negative controls. Increased expression of immunosuppressive cytokines, such as interleukin-4 and interleukin-10 (IL-4 and IL-10), was observed in the pancreas of CTB-Pins-treated NOD mice. Serum levels of immunoglobulin G1 (IgG1), but not IgG2a, were elevated in CTB-Pins-treated mice. Taken together, T-helper 2 (Th2) lymphocyte-mediated oral tolerance is a likely mechanism for the prevention of pancreatic insulitis and the preservation of insulin-producing beta-cells. This is the first report of expression of a therapeutic protein in transgenic chloroplasts of an edible crop. Transplastomic lettuce plants expressing CTB-Pins grew normally and transgenes were maternally inherited in T(1) progeny. This opens up the possibility for the low-cost production and delivery of human therapeutic proteins, and a strategy for the treatment of various other autoimmune diseases.


Subject(s)
Chloroplasts/chemistry , Cholera Toxin/administration & dosage , Diabetes Mellitus, Experimental/complications , Inflammation/prevention & control , Insulin/administration & dosage , Lactuca/chemistry , Nicotiana/chemistry , Plant Extracts/administration & dosage , Recombinant Fusion Proteins/administration & dosage , Administration, Oral , Animals , Inflammation/complications , Mice
12.
Plant Physiol ; 136(4): 4048-60, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15563620

ABSTRACT

p-Hydroxybenzoic acid (pHBA) is the major monomer in liquid crystal polymers. In this study, the Escherichia coli ubiC gene that codes for chorismate pyruvate-lyase (CPL) was integrated into the tobacco (Nicotiana tabacum) chloroplast genome under the control of the light-regulated psbA 5' untranslated region. CPL catalyzes the direct conversion of chorismate, an important branch point intermediate in the shikimate pathway that is exclusively synthesized in plastids, to pHBA and pyruvate. The leaf content of pHBA glucose conjugates in fully mature T1 plants exposed to continuous light (total pooled material) varied between 13% and 18% dry weight, while the oldest leaves had levels as high as 26.5% dry weight. The latter value is 50-fold higher than the best value reported for nuclear-transformed tobacco plants expressing a chloroplast-targeted version of CPL. Despite the massive diversion of chorismate to pHBA, the plastid-transformed plants and control plants were indistinguishable. The highest CPL enzyme activity in pooled leaf material from adult T1 plants was 50,783 pkat/mg of protein, which is equivalent to approximately 35% of the total soluble protein and approximately 250 times higher than the highest reported value for nuclear transformation. These experiments demonstrate that the current limitation for pHBA production in nuclear-transformed plants is CPL enzyme activity, and that the process becomes substrate-limited only when the enzyme is present at very high levels in the compartment of interest, such as the case with plastid transformation. Integration of CPL into the chloroplast genome provides a dramatic demonstration of the high-flux potential of the shikimate pathway for chorismate biosynthesis, and could prove to be a cost-effective route to pHBA. Moreover, exploiting this strategy to create an artificial metabolic sink for chorismate could provide new insight on regulation of the plant shikimate pathway and its complex interactions with downstream branches of secondary metabolism, which is currently poorly understood.


Subject(s)
Chloroplasts/genetics , Chorismic Acid/metabolism , Escherichia coli/enzymology , Nicotiana/metabolism , Oxo-Acid-Lyases/metabolism , Parabens/metabolism , Chloroplasts/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Plant , Oxo-Acid-Lyases/genetics , Phenotype , Plant Leaves/metabolism , Plant Shoots/metabolism , Plants, Genetically Modified , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...