Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
J Membr Biol ; 245(12): 807-14, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22836671

ABSTRACT

The diffusion process of dimethylsulfoxide (DMSO) through zwitterionic dimyristoylphosphatidylcholine (DMPC) lipid bilayer was studied by means of molecular dynamics (MD) simulations. To account for the cryoprotectant concentration difference between the inside and the outside of the cell, dual DMPC lipid bilayers which separate two aqueous reservoirs with and without DMSO were modeled. The initial configuration of the simulation model had DMSO molecules present in one of the aqueous phases (outside the cell) at two different concentrations of ~3 and ~6 mol%. MD simulations were performed on the systems for 50 ns at 323 K and 1 bar. Although the simulation time considered in the study was insufficient for the DMSO molecules to reach the other aqueous phase and equilibrium, early stages of the diffusion process indicated that DMSO molecules had a tendency to diffuse towards the other aqueous phase. The effects of DMSO on bilayer structural characteristics during the diffusion process were investigated. Simulations were analyzed to correlate the following properties of lipid bilayers in the presence of two different aqueous phases: area per lipid, lipid thickness, mass density profiles, lipid tail order parameter and water dipole orientation. Area per lipid calculated for the leaflet facing the aqueous DMSO-water mixture did not show any significant difference compared to area per lipid for the DMSO-free pure DMPC bilayer. Mass density profiles revealed that DMSO molecules had a strong tendency to diffuse toward the aqueous phase with pure water. The lipid tail order parameter calculated for the sn-1 tail of the leaflet facing the aqueous DMSO-water mixture showed that the ordering of lipid tails decreased compared to the leaflet exposed to pure water. However, the ordering of lipid tails in a system where a single bilayer is hydrated by an aqueous DMSO-water mixture is far lower.


Subject(s)
Cryoprotective Agents/chemistry , Dimethyl Sulfoxide/chemistry , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Water/chemistry , Diffusion , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Static Electricity , Time Factors
2.
Cryobiology ; 59(2): 164-70, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19545558

ABSTRACT

There are very few experimental reports on the comparative water transport (membrane permeability) characteristics of ejaculated and epididymal mammalian spermatozoa during freezing. In the present study, we report the effects of cooling ejaculated and epididymal bovine sperm from the same males with and without the presence of a cryoprotective agent, glycerol. Water transport data during freezing of ejaculated and epididymal bovine sperm suspensions were obtained at a cooling rate of 20 degrees C/min under two different conditions: (1) in the absence of any cryoprotective agents, CPAs and, (2) in the presence of 0.7 M glycerol. Using values published in the literature, we modeled the spermatozoa as a cylinder of length 39.8 microm and a radius of 0.4 microm with an osmotically inactive cell volume, V(b), of 0.61 V(o), where V(o) is the isotonic cell volume. The subzero water transport response is analyzed to determine the variables governing the rate of water loss during cooling of bovine spermatozoa, i.e. the membrane permeability parameters (reference membrane permeability, L(pg) and activation energy, E(Lp)). The predicted best-fit permeability parameters ranged from, L(pg)=0.021-0.038 microm/min-atm and E(Lp)=27.8-41.1 kcal/mol. The subzero water transport response and consequently the subzero water transport parameters are not significantly different between the ejaculated and epididymal bovine spermatozoa under corresponding cooling conditions. If this observation is found to be more generally valid for other mammalian species as well, then in the future the sperm extracted from the testes of a postmortem male could be optimally cryopreserved using procedures similar to those derived for ejaculated sperm.


Subject(s)
Cell Membrane Permeability/drug effects , Cryopreservation/veterinary , Semen Preservation/veterinary , Sperm Motility , Spermatozoa/physiology , Animals , Calorimetry, Differential Scanning , Cattle , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Ejaculation , Epididymis/cytology , Epididymis/metabolism , Freezing , Glycerol/pharmacology , Male , Semen Preservation/methods , Sperm Motility/drug effects , Spermatozoa/drug effects , Water/metabolism
3.
Int J Heat Mass Transf ; 51(23-24): 5655-5661, 2008 Nov.
Article in English | MEDLINE | ID: mdl-21811343

ABSTRACT

Knowledge of intercellular ice formation in cells embedded in an extra-cellular suspension is essential for effective design of freezing protocols. The presence of cell membrane causes super-cooling of the intra-cellular region, which nucleates at much lower temperatures than the surrounding extra-cellular space and is accompanied by the exothermic release of the latent heat. This is a dynamic process and causes thermal distortions in and around the cell where nucleation occurs. In the present study, an attempt has been made to numerically determine the magnitude of thermal distortion (ΔT) and the time (dt) it takes for this distortion to damp out to the local temperature. A two-dimensional computational model is presented in which the maximum thermal distortions (with an assumed cell diameter of 50 µm, nucleating at -5 °C while being cooled at 5 °C/min; denoted as Scenario 1) and the lowest-possible thermal distortions (with an assumed cell diameter of 5 µm, nucleating at -20 °C while being cooled at 100 °C/min; denoted as Scenario 2) are determined. Extensive computations have been performed assuming either the presence of a single, dual, or four cells in suspension. It is expected that these representative results would serve the purpose of estimating an effective sampling rate of microscale thermocouples currently being fabricated and of other biomedical devices used to measure intracellular ice formation.

4.
Mol Reprod Dev ; 73(12): 1600-11, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16902954

ABSTRACT

The purpose of the present study was to examine the effect of two different suprazero (room temperature +25 degrees C to +4 degrees C) cooling conditions on the measured water transport response of primate (Macaca mulatta) ovarian tissue in the presence and absence of cryoprotective agents (CPAs). Freshly collected Macaca mulatta (rhesus monkey) ovarian tissue sections were cooled at either 0.5 degrees C/min or 40 degrees C/min from 25 to 4 degrees C. A shape independent differential scanning calorimeter (DSC) technique was then used to measure the volumetric shrinkage during freezing of ovarian tissue sections at a freezing rate of 5 degrees C/min in the presence and absence of three different CPAs (0.85 M glycerol, 0.85 M dimethylsulfoxide, and 0.85 M ethylene glycol). Thus, water transport during freezing of primate ovarian tissue was obtained at eight different conditions (i.e., at four different freezing media with two different suprazero cooling conditions). The water transport response of ovarian tissue cooled rapidly from 25 to 4 degrees C was significantly different (P < 0.01) than that of slow cooled tissue, in the freezing media without CPAs and with dimethylsulfoxide. However, the differences in the measured water transport response due to the imposed suprazero cooling conditions were reduced with the addition of glycerol and ethylene glycol (statistically different with P < 0.05). By fitting a model of water transport to the experimentally obtained volumetric shrinkage data the best-fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The best-fit parameters of water transport in primate ovarian tissue sections ranged from: L(pg) = 0.7 to 0.15 microm/min-atm and E(Lp) = 22.1 to 32.1 kcal/mol (the goodness of fit parameter, R(2) > 0.96). These parameters suggest that the "optimal rates of cryopreservation" for ovarian tissue are significantly dependent upon suprazero cooling conditions and the choice of CPA.


Subject(s)
Cryopreservation/methods , Ice/adverse effects , Ovary/anatomy & histology , Specimen Handling/methods , Temperature , Animals , Cell Membrane Permeability , Cell Size , Cryoprotective Agents/adverse effects , Cryoprotective Agents/analysis , Female , Macaca mulatta , Models, Theoretical , Water/adverse effects
5.
Reproduction ; 131(5): 875-86, 2006 May.
Article in English | MEDLINE | ID: mdl-16672352

ABSTRACT

Recent experimental data show that incubating bovine sperm with cholesterol-loaded cyclodextrin (CLC) before cryopreservation increases the percentages of motile and viable cells recovered after freezing and thawing, compared with control sperm. In the present study, we report the effect of incubating bovine sperm with CLC on the subzero water transport response and the membrane permeability parameters (reference membrane permeability (L(pg)) and activation energy (E(Lp))). Water transport data during freezing of bovine sperm cell suspensions were obtained at a cooling rate of 20 degrees C/min under three different conditions: 1. in the absence of cryoprotective agents (CPAs); 2. in the presence of 0.7 M glycerol; and 3. in the presence of 1.5 mg/ml CLC and 0.7 M glycerol. With previously published values, the bovine sperm cell was modeled as a cylinder of length 39.8 microm and radius 0.4 microm, with osmotically inactive cell volume (V(b)) of 0.61 V(o), where V(o) is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained data, the best-fit water transport parameters (L(pg) and E(Lp)) were determined. The predicted best-fit permeability parameters ranged from L(pg) = 0.02 to 0.036 microm/min-atm and E(Lp) = 26.4 to 42.1 kcal/mol. These subzero water transport parameters are significantly different from the suprazero membrane permeability values (obtained in the absence of extracellular ice) reported in the literature. Calculations made of the theoretical response of bovine spermatozoa at subzero temperatures suggest that the optimal cooling rate to cryopreserve bovine spermatozoa is 45-60 degrees C/min, agreeing quite closely with experimentally determined rates of freezing bovine spermatozoa.


Subject(s)
Cholesterol/pharmacology , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Glycerol/pharmacology , Semen Preservation/methods , Spermatozoa/metabolism , Animals , Biological Transport , Cattle , Cell Membrane Permeability , Cell Size , Cell Survival , Cyclodextrins/pharmacology , Dehydration , Male , Models, Biological , Sperm Motility
6.
Theriogenology ; 66(4): 964-73, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16574210

ABSTRACT

This study explored the optimization of techniques for sperm cryopreservation of an economically important fish species, the striped bass Morone saxatilis. The volumetric shrinkage or the water transport response during freezing of sperm cells was obtained using a differential scanning calorimeter (DSC) technique. Water transport was obtained in the presence of extracellular ice at a cooling rate of 20 degrees C/min in two different media: (1) without cryoprotective agents (CPAs), and (2) with 5% (v/v) dimethyl sulfoxide (DMSO). The sperm cell was modeled as a cylinder of length of 22.8 microm and diameter 0.288 microm and was assumed to have an osmotically inactive cell volume (V(b)) of 0.6 V(0), where V(0) is the isotonic or initial cell volume. By fitting a model of water transport to the experimentally determined water transport data, the best fit membrane permeability parameters (reference membrane permeability to water, L(pg) or L(pg)[cpa] and the activation energy, E(Lp) or E(Lp)[cpa]) were determined and ranged from L(pg)=0.011-0.001 microm/min-atm, and E(Lp)=40.2-9.2 kcal/mol). The parameters obtained in this study suggested that the optimal rate of cooling for striped bass sperm cells in the presence and absence of DMSO range from 14 to 20 degrees C/min. These theoretically predicted rates of optimally freezing M. saxatilis sperm compared quite closely with independent and experimentally determined optimal rates of cooling striped bass sperm.


Subject(s)
Bass/physiology , Cryopreservation/methods , Spermatozoa/physiology , Animals , Cell Membrane Permeability/drug effects , Cell Size , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Freezing , Male , Osmotic Pressure , Spermatozoa/cytology , Temperature , Thermodynamics , Time Factors
7.
Cryobiology ; 52(3): 440-5, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16524569

ABSTRACT

The water transport response during freezing of sperm cells of Morone chrysops (white bass, WB) was obtained using a shape-independent differential scanning calorimeter (DSC) technique. Sperm cell suspensions were frozen at a cooling rate of 20 degrees C/min in two different media: (1) without cryoprotective agents (CPAs), or (2) with 5% (v/v) dimethyl sulfoxide (Me2SO). For calculations, the sperm cell was modeled as a cylinder of length 24.8 microm and diameter of 0.305 microm, while the osmotically inactive cell volume (Vb) was assumed to be 0.6 Vo, where Vo was the isotonic or the initial cell volume. By fitting a model of water transport to the experimentally determined water transport data, the best fit membrane permeability parameters (reference membrane permeability to water, Lpg or Lpg[cpa] and the activation energy, ELp or ELp[cpa]) were determined, and ranged from Lpg = 0.51-1.7 x 10(-15) m3/Ns (0.003-0.01 microm/min-atm), and ELp = 83.6-131.3 kJ/mol (20.0-31.4 kcal/mol). The parameters obtained in this study suggest that the optimal rate of cooling for M. chrysops sperm cells is approximately 22 degrees C/min, a value that compares closely with experimentally determined optimal rates of cooling (approximately 16 degrees C/min).


Subject(s)
Cryopreservation , Spermatozoa , Animals , Bass , Calorimetry, Differential Scanning , Cell Membrane Permeability/drug effects , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Freezing , Male , Spermatozoa/drug effects , Spermatozoa/metabolism
8.
Mol Reprod Dev ; 73(3): 330-41, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16362972

ABSTRACT

To model the cryobiological responses of cells and tissues, permeability characteristics are often measured at suprazero temperatures and the measured values are used to predict the responses at subzero temperatures. The purpose of the present study was to determine whether the rate of cooling from +25 to +4 degrees C influenced the measured water transport response of ovarian tissue at subzero temperatures in the presence or absence of cryoprotective agents (CPAs). Sections of freshly collected equine ovarian tissue were first cooled either at 40 degrees C/min or at 0.5 degrees C/min from 25 to 4 degrees C, and then cooled to subzero temperatures. A shape-independent differential scanning calorimeter (DSC) technique was used to measure the volumetric shrinkage during freezing of equine ovarian tissue sections. After ice was induced to form in the extracellular fluid within the specimen, the sample was frozen from the phase change temperature to -50 degrees C at 5 degrees C/min. Replicate samples were frozen in isotonic medium alone or in medium containing 0.85 M glycerol or 0.85 M dimethylsulfoxide. The water transport response of ovarian tissue samples cooled at 40 degrees C/min from 25 to 4 degrees C was significantly different (confidence level >95%) from that of tissue samples cooled at 0.5 degrees C/min, whether in the presence or absence of CPAs. We fitted a model of water transport to the experimentally-derived volumetric shrinkage data and determined the best-fit membrane permeability parameters (L(pg) and E(Lp)) of equine ovarian tissue during freezing. Subzero water transport parameters of ovarian tissue samples cooled at 0.5 degrees C/min from 25 to 4 degrees C ranged from: L(pg) = 0.06 to 0.73 microm/min.atm and E(Lp) = 6.1 to 20.5 kcal/mol. The corresponding parameters of samples cooled at 40 degrees C/min from 25 to 4 degrees C ranged from: L(pg) = 0.04 to 0.61 microm/min.atm and E(Lp) = 8.2 to 54.2 kcal/mol. Calculations made of the theoretical response of tissue at subzero temperatures suggest that the optimal cooling rates to cryopreserve ovarian tissue are significantly dependent upon suprazero cooling conditions.


Subject(s)
Cryopreservation/methods , Ovary/physiology , Temperature , Animals , Biological Transport/physiology , Calorimetry/methods , Cells, Cultured , Culture Media/chemistry , Dimethyl Sulfoxide/chemistry , Female , Glycerol/chemistry , Horses , Ovary/cytology , Permeability , Tissue Culture Techniques , Water/metabolism
9.
Cryobiology ; 50(3): 250-63, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15925577

ABSTRACT

This study reports the subzero water transport characteristics (and empirically determined optimal rates for freezing) of sperm cells of live-bearing fishes of the genus Xiphophorus, specifically those of the southern platyfish Xiphophorus maculatus. These fishes are valuable models for biomedical research and are commercially raised as ornamental fish for use in aquariums. Water transport during freezing of X. maculatus sperm cell suspensions was obtained using a shape-independent differential scanning calorimeter technique in the presence of extracellular ice at a cooling rate of 20 degrees C/min in three different media: (1) Hanks' balanced salt solution (HBSS) without cryoprotective agents (CPAs); (2) HBSS with 14% (v/v) glycerol, and (3) HBSS with 10% (v/v) dimethyl sulfoxide (DMSO). The sperm cell was modeled as a cylinder with a length of 52.35 microm and a diameter of 0.66 microm with an osmotically inactive cell volume (Vb) of 0.6 V0, where V0 is the isotonic or initial cell volume. This translates to a surface area, SA to initial water volume, WV ratio of 15.15 microm(-1). By fitting a model of water transport to the experimentally determined volumetric shrinkage data, the best fit membrane permeability parameters (reference membrane permeability to water at 0 degrees C, Lpg or Lpg [cpa] and the activation energy, E(Lp) or E(Lp) [cpa]) were found to range from: Lpg or Lpg [cpa] = 0.0053-0.0093 microm/minatm; E(Lp) or E(Lp) [cpa] = 9.79-29.00 kcal/mol. By incorporating these membrane permeability parameters in a recently developed generic optimal cooling rate equation (optimal cooling rate, [Formula: see text] where the units of B(opt) are degrees C/min, E(Lp) or E(Lp) [cpa] are kcal/mol, L(pg) or L(pg) [cpa] are microm/minatm and SA/WV are microm(-1)), we determined the optimal rates of freezing X. maculatus sperm cells to be 28 degrees C/min (in HBSS), 47 degrees C/min (in HBSS+14% glycerol) and 36 degrees C/min (in HBSS+10% DMSO). Preliminary empirical experiments suggest that the optimal rate of freezing X. maculatus sperm in the presence of 14% glycerol to be approximately 25 degrees C/min. Possible reasons for the observed discrepancy between the theoretically predicted and experimentally determined optimal rates of freezing X. maculatus sperm cells are discussed.


Subject(s)
Cell Membrane Permeability/physiology , Cryopreservation/veterinary , Poecilia/physiology , Semen Preservation/veterinary , Spermatozoa/metabolism , Water/metabolism , Animals , Calorimetry, Differential Scanning , Cryopreservation/methods , Cryoprotective Agents , Dimethyl Sulfoxide , Freezing , Glycerol , Isotonic Solutions , Male , Models, Theoretical , Semen Preservation/methods
10.
Mol Reprod Dev ; 67(4): 446-57, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14991736

ABSTRACT

Incomplete understanding of the water transport parameters (reference membrane permeability, L(pg), and activation energy, E(Lp)) during freezing in the presence of extracellular ice and cryoprotective agents (CPAs) is one of the main limiting factors in reconciling the difference between the numerically predicted value and the experimentally determined optimal rates of freezing in boar (and in general mammalian) gametes. In the present study, a shape-independent differential scanning calorimeter (DSC) technique was used to measure the water transport during freezing of boar spermatozoa. Water transport data during freezing of boar sperm cell suspensions were obtained at cooling rates of 5 and 20 degrees C/min in the presence of extracellular ice and 6% (v/v) glycerol. Using previously published values, the boar sperm cell was modeled as a cylinder of length 80.1 microm and a radius of 0.31 microm with an osmotically inactive cell volume, V(b), of 0.6 V(o), where V(o) is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained data, the best-fit water transport parameters (L(pg) and E(Lp)) were determined. The "combined-best-fit" parameters at 5 and 20 degrees C/min for boar spermatozoa in the presence of extracellular ice are: L(pg) = 3.6 x 10(-15) m(3)/N. s (0.02 microm/min-atm) and E(Lp) = 122.5 kJ/mole (29.3 kcal/mole) (R(2) = 0.99); and the corresponding parameters in the presence of extracellular ice and glycerol are: L(pg)[cpa] = 0.90 x 10(-15) m(3)/N. s (0.005 microm/min-atm) and E(Lp)[cpa] = 75.7 kJ/mole (18.1 kcal/mole) (R(2) = 0.99). The water transport parameters obtained in the present study are significantly different from previously published parameters for boar and other mammalian spermatozoa obtained at suprazero temperatures and at subzero temperatures in the absence of extracellular ice. The theoretically predicted optimal rates of freezing using the new parameters ( approximately 30 degrees C/min) are in close agreement with previously published but experimentally determined optimal cooling rates. This analysis reconciles a long-standing difference between theoretically predicted and experimentally determined optimal cooling rates for boar spermatozoa.


Subject(s)
Cryopreservation , Semen Preservation , Spermatozoa , Animals , Calorimetry, Differential Scanning , Cell Membrane Permeability , Cell Survival , Cold Temperature , Computer Simulation , Male , Swine , Thermodynamics
11.
Reproduction ; 124(5): 643-8, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12417002

ABSTRACT

The effects of extracellular ice and cryoprotective agents on the measured volumetric shrinkage response and the membrane permeability parameters of equine spermatozoa have been reported previously. The volumetric shrinkage data were obtained using a differential scanning calorimeter technique that was independent of cell shape. The aim of this study was to examine the effects of collection and cooling conditions on the motility and the water transport parameters at subzero temperatures of equine spermatozoa. Stallion semen samples were collected using either a commercial lubricating agent, which caused osmotic stress to the spermatozoa, or water-insoluble Vaseline( trade mark ) as the artificial vagina lubricant. In some experiments, spermatozoa were cooled at 1 degrees C min(-1) from 20 degrees C to 4 degrees C to induce cold shock. An Equitainer was used to achieve control cooling rates (< or = 0.3 degrees C min(-1)) at temperatures > 0 degrees C. The water transport response of spermatozoa that were cold-shocked and osmotically shocked was significantly different from that of control spermatozoa (P < 0.01). Osmotic stress appeared to have an effect on the water transport response, although this effect was not significant. These results indicate that cold shock alters the behaviour of equine spermatozoa in cryopreservation protocols as a result of changes in the water transport properties of the plasma membrane. Although osmotic stress did not significantly affect water transport in equine spermatozoa, it did significantly decrease sperm motility in the extended semen samples (P < 0.01), which would, in turn, lower the quality of cold-stored or cryopreserved spermatozoa.


Subject(s)
Cryopreservation/methods , Cryopreservation/veterinary , Horses , Semen Preservation/methods , Semen Preservation/veterinary , Spermatozoa/physiology , Animals , Biological Transport , Cell Membrane/metabolism , Lubrication , Male , Specimen Handling , Sperm Motility , Water/metabolism
12.
Biol Reprod ; 66(1): 222-31, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11751286

ABSTRACT

Optimization of equine sperm cryopreservation protocols requires an understanding of the water permeability characteristics and volumetric shrinkage response during freezing. A cell-shape-independent differential scanning calorimeter (DSC) technique was used to measure the volumetric shrinkage during freezing of equine sperm suspensions at cooling rates of 5 degrees C/min and 20 degrees C/min in the presence and absence of cryoprotective agents (CPAs), i.e., in the Kenney extender and in the lactose-EDTA extender, respectively. The equine sperm was modeled as a cylinder of length 36.5 microm and a radius of 0.66 microm with an osmotically inactive cell volume (V(b)) of 0.6V(o), where V(o) is the isotonic cell volume. Sperm samples were collected using water-insoluble Vaseline in the artificial vagina and slow cooled at < or = 0.3 degrees C/min in an Equitainer-I from 37 degrees C to 4 degrees C. By fitting a model of water transport to the experimentally obtained DSC volumetric shrinkage data, the best-fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The combined best-fit parameters of water transport (at both 5 degrees C/min and 20 degrees C/min) in Kenney extender (absence of CPAs) are L(pg) = 0.02 microm min(-1) atm(-1) and E(Lp) = 32.7 kcal/mol with a goodness-of-fit parameter R(2) = 0.96, and the best-fit parameters in the lactose-EDTA extender (the CPA medium) are L(pg)[cpa] = 0.008 microm min(-1) atm(-1) and E(Lp)[cpa] = 12.1 kcal/mol with R(2) = 0.97. These parameters suggest that the optimal cooling rate for equine sperm is approximately 29 degrees C/min and is approximately 60 degrees C/min in the Kenney extender and in the lactose-EDTA extender. These rates are predicted assuming no intracellular ice formation occurs and that the approximately 5% of initial osmotically active water volume trapped inside the cells at -30 degrees C will form innocuous ice on further cooling. Numerical simulations also showed that in the lactose-EDTA extender, equine sperm trap approximately 3.4% and approximately 7.1% of the intracellular water when cooled at 20 degrees C/min and 100 degrees C/min, respectively. As an independent test of this prediction, the percentage of viable equine sperm was obtained after freezing at 6 different cooling rates (2 degrees C/min, 20 degrees C/min, 50 degrees C/min, 70 degrees C/min, 130 degrees C/min, and 200 degrees C/min) to -80 degrees C in the CPA medium. Sperm viability was essentially constant between 20 degrees C/min and 130 degrees C/min.


Subject(s)
Cryoprotective Agents/pharmacology , Horses/physiology , Semen Preservation , Spermatozoa/drug effects , Spermatozoa/physiology , Algorithms , Animals , Calorimetry, Differential Scanning , Cell Membrane/physiology , Cell Membrane/ultrastructure , Cell Survival/physiology , Computer Simulation , Cryopreservation , Freezing , In Vitro Techniques , Male , Temperature , Water/metabolism
13.
Cryobiology ; 42(4): 225-43, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11748932

ABSTRACT

The use of cryosurgery in the treatment of uterine fibroids is emerging as a possible treatment modality. The two known mechanisms of direct cell injury during the tissue freezing process are linked to intracellular ice formation and cellular dehydration. These processes have not been quantified within uterine fibroid tumor tissue. This study reports the use of a combination of freeze-substitution microscopy and differential scanning calorimetry (DSC) to quantify freeze-induced dehydration within uterine fibroid tumor tissue. Stereological analysis of histological tumor sections was used to obtain the initial cellular volume (V(o)) or the Krogh model dimensions (deltaX, the distance between the microvascular channels = 15.5 microm, r(vo), the initial radius of the extracellular space = 4.8 micro m, and L, the axial length of the Krogh cylinder = 19.1 microm), the interstitial volume ( approximately 23%), and the vascular volume ( approximately 7%) of the fibroid tumor tissue. A Boyle-van't Hoff plot was then constructed by examining freeze-substituted micrographs of "equilibrium"-cooled tissue slices to obtain the osmotically inactive cell volume, V(b) = 0.47V(o). The high interstitial volume precludes the use of freeze-substitution microscopy data to quantify freeze-induced dehydration. Therefore, a DSC technique, which does not suffer from this artifact, was used to obtain the water transport data. A model of water transport was fit to the calorimetric data at 5 and 20 degrees C/min to obtain the "combined best fit" membrane permeability parameters of the embedded fibroid tumor cells, assuming either a Krogh cylinder geometry, L(pg) = 0.92 x 10(-13) m(3)/Ns (0.55 microm/min atm) and E(Lp) = 129.3 kJ/mol (30.9 kcal/mol), or a spherical cell geometry (cell diameter = 18.3 microm), L(pg) = 0.45 x 10(-13) m(3)/Ns (0.27 microm/min atm) and E(Lp) = 110.5 kJ/mol (26.4 kcal/mol). In addition, numerical simulations were performed to generate conservative estimates, in the absence of ice nucleation between -5 and -30 degrees C, of intracellular ice volume in the tumor tissue at various cooling rates typical of those experienced during cryosurgery (< or =100 degrees C/min). With this assumption, the Krogh model simulations showed that the fibroid tumor tissue cells cooled at rates < or = 50 degrees C/min are essentially dehydrated; however, at rates >50 degrees C/min the amount of water trapped within the tissue cells increases rapidly with increasing cooling rate, suggesting the formation of intracellular ice.


Subject(s)
Cryosurgery/methods , Leiomyoma/surgery , Uterine Neoplasms/surgery , Body Water/metabolism , Calorimetry, Differential Scanning , Cell Membrane Permeability , Computer Simulation , Female , Freeze Substitution , Humans , Leiomyoma/metabolism , Leiomyoma/pathology , Microscopy/methods , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology
14.
Hum Reprod ; 15(5): 1125-35, 2000 May.
Article in English | MEDLINE | ID: mdl-10783365

ABSTRACT

A firm biophysical basis for the cryopreservation of human spermatozoa is limited by a lack of knowledge regarding the water permeability characteristics during freezing in the presence of extracellular ice and cryoprotective agents (CPA). Cryomicroscopy cannot be used to measure dehydration during freezing in human spermatozoa because of their highly non-spherical shape and their small dimensions which are at the limits of light microscopic resolution. Using a new shape-independent differential scanning calorimeter (DSC) technique, volumetric shrinkage during freezing of human sperm cell suspensions was obtained at cooling rates of 5 and 10 degrees C/min in the presence of extracellular ice and CPA. Using previously published data, the human sperm cell was modelled as a cylinder of length 40.2 micrometer and a radius of 0.42 micrometer with an osmotically inactive cell volume, V(b), of 0.23V(o), where V(o) is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data, the best fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The 'combined best fit' membrane permeability parameters at 5 and 10 degrees C/min for human sperm cells in modified media are: L(pg) = 2. 4x10(-14) m(3)/Ns (0.14 micrometer/min-atm) and E(Lp) = 357.7 kJ/mol (85. 5 kcal/mol) (R(2) = 0.98), and in CPA media (with 6% glycerol and 10% egg yolk) are L(pg)[cpa] = 0.67x10(-14) m(3)/Ns (0.04 micrometer/min-atm) and E(Lp)[cpa] = 138.9 kJ/mol (33.2 kcal/mol) (R(2) = 0.98). These parameters are significantly different from previously published parameters for human spermatozoa obtained at suprazero temperatures and at subzero temperatures in the absence of extracellular ice. The parameters obtained in this study also suggest that damaging intracellular ice formation (IIF) could occur in human sperm cells at cooling rates as low as 25-45 degrees C/min, depending on the concentrations of the CPA. This may help to explain the discrepancy between the empirically determined optimal cryopreservation cooling rates (<100 degrees C/min) and the numerically predicted optimal cooling rates (>7000 degrees C/min) obtained using previously published suprazero human sperm permeability parameters which do not account for the presence of extracellular ice.


Subject(s)
Cell Membrane Permeability , Freezing , Spermatozoa/physiology , Calorimetry, Differential Scanning/methods , Cell Membrane/drug effects , Cell Membrane Permeability/drug effects , Computer Simulation , Cryopreservation/methods , Culture Media , Glycerol/pharmacology , Humans , Ice , Male , Spermatozoa/drug effects , Water
15.
Biol Reprod ; 61(3): 764-75, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10456855

ABSTRACT

Optimization of techniques for cryopreservation of mammalian sperm is limited by a lack of knowledge regarding water permeability characteristics during freezing in the presence of extracellular ice and cryoprotective agents (CPAs). Cryomicroscopy cannot be used to measure dehydration during freezing in mammalian sperm because they are highly nonspherical and their small dimensions are at the limits of light microscopic resolution. Using a new shape-independent differential scanning calorimeter (DSC) technique, volumetric shrinkage during freezing of ICR mouse epididymal sperm cell suspensions was obtained at cooling rates of 5 and 20 degrees C/min in the presence of extracellular ice and CPAs. Using previously published data, the mouse sperm cell was modeled as a cylinder (122-microm long, radius 0.46 microm) with an osmotically inactive cell volume (V(b)) of 0.61V(o), where V(o) is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data, the best-fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The "combined best-fit" membrane permeability parameters at 5 and 20 degrees C/min for mouse sperm cells in solution are as follows: in D-PBS: L(pg) = 1.7 x 10(-15) m(3)/Ns (0.01 microm/min-atm) and E(Lp) = 94.1 kJ/mole (22.5 kcal/mole) (R(2) = 0.94); in "low" CPA media (consisting of 1% glycerol, 6% raffinose, and 15% egg yolk in D-PBS): L(pg)[cpa] = 1.7 x 10(-15) m(3)/Ns (0.01 microm/min-atm) and E(Lp)[cpa] = 122.2 kJ/mole (29.2 kcal/mole) (R(2) = 0.98); and in "high" CPA media (consisting of 4% glycerol, 16% raffinose, and 15% egg yolk in D-PBS): L(pg)[cpa] = 0.68 x 10(-15) m(3)/Ns (0.004 microm/min-atm) and E(Lp)[cpa] = 63.6 kJ/mole (15.2 kcal/mole) (R(2) = 0.99). These parameters are significantly different than previously published parameters for mammalian sperm obtained at suprazero temperatures and at subzero temperatures in the absence of extracellular ice. The parameters obtained in this study also suggest that damaging intracellular ice formation (IIF) could occur in mouse sperm cells at cooling rates as low as 25-45 degrees C/min, depending on the concentrations of the CPAs. This may help to explain the discrepancy between the empirically determined optimal cryopreservation cooling rates, 10-40 degrees C/min, and the numerically predicted optimal cooling rates, greater than 5000 degrees C/min, obtained using suprazero mouse sperm permeability parameters that do not account for the presence of extracellular ice. As an independent test of this prediction, the percentages of viable and motile sperm cells were obtained after freezing at two different cooling rates ("slow" or 5 degrees C/min; "fast," or 20 degrees C/min) in both the low and high CPA media. The greatest sperm motility and viability was found with the low CPA media under fast (20 degrees C/min) cooling conditions.


Subject(s)
Cell Membrane Permeability , Cryopreservation , Cryoprotective Agents/pharmacology , Ice , Spermatozoa/metabolism , Water/metabolism , Animals , Calorimetry, Differential Scanning , Cell Separation , Cell Survival , Freezing , Male , Mice , Mice, Inbred ICR , Semen Preservation , Sperm Motility , Thermodynamics
16.
Cryobiology ; 38(4): 310-26, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10413574

ABSTRACT

In this study, two methods are used to assess the equilibrium and dynamic cell volumes in Rana sylvatica liver tissue during freezing in the presence and absence of a cryoprotectant (glucose). The first is a "two-step" low-temperature microscopy (equilibrium and dynamic) freezing method and the second is a differential scanning calorimeter (DSC) technique. These two techniques were used to study (i) the in vitro architecture of R. sylvatica frog liver tissue and to measure its characteristic Krogh cylinder dimensions; (ii) the "equilibrium" (infinitely slow) cooling behavior and the osmotically inactive cell volume (V(b)) of R. sylvatica liver cells; and (iii) the dynamic water transport response of R. sylvatica liver cells in the presence and absence of the CPA (glucose) at a cooling rate of 5 degrees C/min. Stereological analysis of the slam frozen (>1000 degrees C/min) micrographs led to the determination that 74% of the liver tissue in control frogs was cellular versus 26% that was extracellular (vascular or interstitial). Mapping the stereological measurements onto a standard Krogh cylinder geometry (Model 1) yielded distance between adjacent sinusoid centers, DeltaX = 64 microm; original sinusoid (vascular) radius, r(vo) = 18.4 microm; and length of the Krogh cylinder, L = 0.71 microm (based on an isolated frog hepatocyte cell diameter of 16 microm). A significant observation was that approximately 24% of the frog hepatocyte cells are not in direct contact with the vasculature. To account for the cell-cell contact in the frog liver architecture a modified Krogh cylinder geometry (Model 2) was constructed. In this model (Model 2) a second radius, r(2) = 28.7 microm, was defined (in addition to the original sinusoid radius, r(vo) = 18.4 microm, defined above) as the radius of the membrane between the adjacent cells (directly adjacent to vascular spaces) and embedded cells (removed from vascular spaces). By plotting the two-step equilibrium cooling results on a Boyle-van't Hoff plot, the osmotically inactive cell volume, V(b) was obtained as 0.4. V(o) (where V(o) is the isotonic cell volume). The two-step dynamic micrographs and the heat release measurements from the DSC were used to obtain water transport data during freezing. The DSC technique confirmed that R. sylvatica cells in control liver tissue do not dehydrate completely when cooled at 5 degrees C/min but do so when cooled at 2 degrees C/min.


Subject(s)
Glucose/pharmacology , Liver/physiology , Animals , Freezing , Ranidae
17.
Cryobiology ; 38(4): 327-38, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10413575

ABSTRACT

The "two-step" low-temperature microscopy (equilibrium and dynamic) freezing methods and a differential scanning calorimetry (DSC) technique were used to assess the equilibrium and dynamic cell volumes in Rana sylvatica liver tissue during freezing, in Part I of this study. In this study, the experimentally determined dynamic water transport data are curve fit to a model of water transport using a standard Krogh cylinder geometry (Model 1) to predict the biophysical parameters of water transport: L(pg) = 1.76 microm/min-atm and E(L(p)) = 75.5 kcal/mol for control liver cells and L(pg)[cpa] = 1.18 microm/min-atm and E(L(p))[cpa] = 69.0 kcal/mol for liver cells equilibrated with 0.4 M glucose. The DSC technique confirmed that R. sylvatica cells in control liver tissue do not dehydrate completely when cooled at 5 degrees C/min but do so when cooled at 2 degrees C/min. Cells also retained twice as much intracellular fluid in the presence of 0.4 M glucose than in control tissue when cooled at 5 degrees C/min. The ability of R. sylvatica liver cells to retain water during fast cooling (>/=5 degrees C/min) appears to be primarily due to its liver tissue architecture and not to a dramatically lower permeability to water, in comparison to mammalian (rat) liver cells which do dehydrate completely when cooled at 5 degrees C/min. A modified Krogh model (Model 2) was constructed to account for the cell-cell contact in frog liver architecture. Using the same biophysical permeability parameters obtained with Model 1, the modified Krogh model (Model 2) is used in this study to qualitatively explain the experimentally measured water retention in some cells during freezing on the basis of different volumetric responses by cells directly adjacent to vascular space versus cells at least one cell removed from the vascular space. However, at much slower cooling rates (1-2 degrees C/h) experienced by the frog in nature, the deciding factor in water retention is the presence of glucose and the maintenance of a sufficiently high subzero temperature (>/=-8 degrees C).


Subject(s)
Glucose/pharmacology , Liver/physiology , Models, Biological , Models, Theoretical , Animals , Freezing , Ranidae
18.
Cryobiology ; 36(2): 124-55, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9527874

ABSTRACT

A new technique using a differential scanning calorimeter (DSC) was developed to obtain dynamic and quantitative water transport data in cell suspensions during freezing. The model system investigated was a nonattached spherical lymphocyte (Epstein-Barr virus transformed, EBVT) human cell line. Data from the technique show that the initial heat release of a prenucleated sample containing osmotically active cells in media is greater than the final heat release of an identical sample of osmotically inactive or lysed cells in media. The total integrated magnitude of this difference, Deltaqdsc, was found to be proportional to the cytocrit and hence also to the supercooled water volume in the sample. Further, the normalized fractional integrated heat release difference as a function of temperature, Deltaq(T)dsc/Deltaqdsc, was shown to correlate with the amount of supercooled cellular water which had exosmosed from the cell as a function of subzero temperature at constant cooling rates of 5, 10, and 20 degrees C/min. Several important limitations of the technique are (1) that it requires a priori knowledge of geometric parameters such as the surface area, initial volume, and osmotically inactive cell volume and (2) that the technique alone cannot determine whether the heat released from supercooled cellular water is due to dehydration or intracellular ice formation. Cryomicroscopy was used to address these limitations. The initial cell volume and surface area were obtained directly whereas a Boyle-van't Hoff (BVH) plot was constructed to obtain the osmotically inactive cell volume Vb. Curve fitting the BVH data assuming linear osmometric behavior yielded Vb = 0.258V0; however, nonlinearity in the data suggests that the EBVT lymphocyte cells are not "ideal osmometers" at low subzero temperatures and created some uncertainty in the actual value of Vb. Cryomicroscopy further confirmed that dehydration was the predominant biophysical response of the cells over the range of cooling rates investigated. One notable exception occurred at a rate of 20 degrees C/min where evidence for intracellular ice formation due to a DSC measured heat release between -30 and -34 degrees C correlated with a higher end volume but no darkening of the cells during cryomicroscopy. For the cooling rate tested (5 degrees C/min) the cryomicroscopy data correlated statistically very well with the DSC water transport data. A model of water transport was fit to the DSC water transport data and the average (5, 10, and 20 degrees C/min) biophysical parameters for the EBVT lymphocytes were found to be Lpg = 0.10 micro m/min-atm, ELp = 15.5 kcal/mol. Finally, the decrease in heat release from osmotically active cells measured by the DSC during repetitive freezing and thawing was found to correlate strongly with the viability of the cells measured during identical freeze/thaw protocols with cryomicroscopy. This shows the additional ability of the technique to assess freeze/thaw injury. In summary, this DSC technique is a promising new approach for measuring water transport in cellular systems during freezing.


Subject(s)
Cryopreservation , Water , Biological Transport , Calorimetry/instrumentation , Cell Line , Freezing , Humans
19.
J Biomech Eng ; 120(5): 559-69, 1998 Oct.
Article in English | MEDLINE | ID: mdl-10412432

ABSTRACT

There is currently a need for experimental techniques to assay the biophysical response (water transport or intracellular ice formation, IIF) during freezing in the cells of whole tissue slices. These data are important in understanding and optimizing biomedical applications of freezing, particularly in cryosurgery. This study presents a new technique using a Differential Scanning Calorimeter (DSC) to obtain dynamic and quantitative water transport data in whole tissue slices during freezing. Sprague-Dawley rat liver tissue was chosen as our model system. The DSC was used to monitor quantitatively the heat released by water transported from the unfrozen cell cytoplasm to the partially frozen vascular/extracellular space at 5 degrees C/min. This technique was previously described for use in a single cell suspension system (Devireddy, et al. 1998). A model of water transport was fit to the DSC data using a nonlinear regression curve-fitting technique, which assumes that the rat liver tissue behaves as a two-compartment Krogh cylinder model. The biophysical parameters of water transport for rat liver tissue at 5 degrees C/min were obtained as Lpg = 3.16 x 10(-13) m3/Ns (1.9 microns/min-atm), ELp = 265 kJ/mole (63.4 kcal/mole), respectively. These results compare favorably to water transport parameters in whole liver tissue reported in the first part of this study obtained using a freeze substitution (FS) microscopy technique (Pazhayannur and Bischof, 1997). The DSC technique is shown to be a fast, quantitative, and reproducible technique to measure dynamic water transport in tissue systems. However, there are several limitations to the DSC technique: (a) a priori knowledge that the biophysical response is in fact water transport, (b) the technique cannot be used due to machine limitations at cooling rates greater than 40 degrees C/min, and (c) the tissue geometric dimensions (the Krogh model dimensions) and the osmotically inactive cell volumes Vb, must be determined by low-temperature microscopy techniques.


Subject(s)
Calorimetry, Differential Scanning/methods , Cell Membrane Permeability/physiology , Freezing , Liver/cytology , Water/metabolism , Animals , Biophysical Phenomena , Biophysics , Cell Size , Cells, Cultured , Least-Squares Analysis , Male , Numerical Analysis, Computer-Assisted , Predictive Value of Tests , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Time Factors
20.
Ann N Y Acad Sci ; 858: 284-97, 1998 Sep 11.
Article in English | MEDLINE | ID: mdl-9917825

ABSTRACT

This study investigates the water transport characteristics during freezing in the liver tissue of the freeze-tolerant wood frog Rana sylvatica. Experiments were performed using both low temperature microscopy and a differential scanning calorimeter (DSC). Tissue samples were cooled at 2 and 5 degree C/min by a "two-step" freezing technique to end temperatures of -4, -6, -8, -10, and -20 degrees C, followed by a slam cooling (> 1000 degrees C/min) step. Stereological analysis of the low temperature microscopy results leads to the conclusions that 74% of the control tissue is cellular (26% vascular), Vb (osmotically inactive cell volume) is 0.4 Vo and the Krogh cylinder dimensions are: distance between adjacent sinusoid centers, delta X = 64 microns, original sinusoid (vascular) radius, rvo = 18.4 microns and length of the Krogh cylinder, L = 0.71 microns (assuming a single isolated hepatocyte cell diameter of 16 microns). A parallel study was also done using the DSC at 2 and 5 degrees C/min, and the measured heat releases from the tissue were used to calculate water transport data. Both techniques confirmed that tissue cooled at 5 degrees C/min does not dehydrate completely, but does so when cooled at 2 degrees C/min. By curve fitting a model to 5 degrees C/min water transport data from both techniques the biophysical parameters of water transport were obtained: Lpg = 1.76 microns/min-atm and ELp = 75.5 Kcal/mol. A modified Krogh model was used to account for the fact that approximately 24% of the hepatocytes were found not to be in direct contact with the vasculature. This model was then used to explain the experimentally measured water retention in some cells on the basis of different volumetric responses to dehydration of cells directly adjacent to vascular spaces and cells at least one cell removed from the vascular spaces.


Subject(s)
Cryopreservation/methods , Liver , Animals , Biophysics/methods , Calorimetry, Differential Scanning/methods , Desiccation , Freezing , Liver/cytology , Liver/physiology , Mammals , Microscopy/methods , Models, Biological , Ranidae
SELECTION OF CITATIONS
SEARCH DETAIL