Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 41(6): 824-837, 2022 02.
Article in English | MEDLINE | ID: mdl-34857888

ABSTRACT

Transforming growth factor beta (TGFß) superfamily signaling is a prime inducer of epithelial-mesenchymal transitions (EMT) that foster cancer cell invasion and metastasis, a major cause of cancer-related deaths. Yet, TGFß signaling is frequently inactivated in human tumor entities including colorectal cancer (CRC) and pancreatic adenocarcinoma (PAAD) with a high proportion of mutations incapacitating SMAD4, which codes for a transcription factor (TF) central to canonical TGFß and bone morphogenetic protein (BMP) signaling. Beyond its role in initiating EMT, SMAD4 was reported to crucially contribute to subsequent gene regulatory events during EMT execution. It is therefore widely assumed that SMAD4-mutant (SMAD4mut) cancer cells are unable to undergo EMT. Here, we scrutinized this notion and probed for potential SMAD4-independent EMT execution using SMAD4mut CRC cell lines. We show that SMAD4mut cells exhibit morphological changes, become invasive, and regulate EMT marker genes upon induction of the EMT-TF SNAIL1. Furthermore, SNAIL1-induced EMT in SMAD4mut cells was found to be entirely independent of TGFß/BMP receptor activity. Global assessment of the SNAIL1-dependent transcriptome confirmed the manifestation of an EMT gene regulatory program in SMAD4mut cells highly related to established EMT signatures. Finally, analyses of human tumor transcriptomes showed that SMAD4 mutations are not underrepresented in mesenchymal tumor samples and that expression patterns of EMT-associated genes are similar in SMAD4mut and SMAD4 wild-type (SMAD4wt) cases. Altogether, our findings suggest that alternative TFs take over the gene regulatory functions of SMAD4 downstream of EMT-TFs, arguing for considerable plasticity of gene regulatory networks operating in EMT execution. Further, they establish that EMT is not categorically precluded in SMAD4mut tumors, which is relevant for their diagnostic and therapeutic evaluation.


Subject(s)
Epithelial-Mesenchymal Transition
2.
Cell ; 184(22): 5577-5592.e18, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34644529

ABSTRACT

Intratumoral heterogeneity is a critical frontier in understanding how the tumor microenvironment (TME) propels malignant progression. Here, we deconvolute the human pancreatic TME through large-scale integration of histology-guided regional multiOMICs with clinical data and patient-derived preclinical models. We discover "subTMEs," histologically definable tissue states anchored in fibroblast plasticity, with regional relationships to tumor immunity, subtypes, differentiation, and treatment response. "Reactive" subTMEs rich in complex but functionally coordinated fibroblast communities were immune hot and inhabited by aggressive tumor cell phenotypes. The matrix-rich "deserted" subTMEs harbored fewer activated fibroblasts and tumor-suppressive features yet were markedly chemoprotective and enriched upon chemotherapy. SubTMEs originated in fibroblast differentiation trajectories, and transitory states were notable both in single-cell transcriptomics and in situ. The intratumoral co-occurrence of subTMEs produced patient-specific phenotypic and computationally predictable heterogeneity tightly linked to malignant biology. Therefore, heterogeneity within the plentiful, notorious pancreatic TME is not random but marks fundamental tissue organizational units.


Subject(s)
Pancreatic Neoplasms/pathology , Tumor Microenvironment , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Differentiation , Cell Proliferation , Epithelium/pathology , Extracellular Matrix/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Phenotype , Stromal Cells/pathology , Survival Analysis , Tumor Microenvironment/immunology
3.
Cancers (Basel) ; 12(4)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326239

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a pivotal process in development and disease. In carcinogenesis, various signaling pathways are known to trigger EMT by inducing the expression of EMT transcription factors (EMT-TFs) like SNAIL1, ultimately promoting invasion, metastasis and chemoresistance. However, how EMT is executed downstream of EMT-TFs is incompletely understood. Here, using human colorectal cancer (CRC) and mammary cell line models of EMT, we demonstrate that SNAIL1 critically relies on bone morphogenetic protein (BMP) signaling for EMT execution. This activity requires the transcription factor SMAD4 common to BMP/TGFß pathways, but is TGFß signaling-independent. Further, we define a signature of BMP-dependent genes in the EMT-transcriptome, which orchestrate EMT-induced invasiveness, and are found to be regulated in human CRC transcriptomes and in developmental EMT processes. Collectively, our findings substantially augment the knowledge of mechanistic routes whereby EMT can be effectuated, which is relevant for the conceptual understanding and therapeutic targeting of EMT processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...