Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 33(6): e4999, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723106

ABSTRACT

Ticks produce chemokine-binding proteins, known as evasins, in their saliva to subvert the host's immune response. Evasins bind to chemokines and thereby inhibit the activation of their cognate chemokine receptors, thus suppressing leukocyte recruitment and inflammation. We recently described subclass A3 evasins, which, like other class A evasins, exclusively target CC chemokines but appear to use a different binding site architecture to control target selectivity among CC chemokines. We now describe the structural basis of chemokine recognition by the class A3 evasin EVA-ACA1001. EVA-ACA1001 binds to almost all human CC chemokines and inhibits receptor activation. Truncation mutants of EVA-ACA1001 showed that, unlike class A1 evasins, both the N- and C-termini of EVA-ACA1001 play minimal roles in chemokine binding. To understand the structural basis of its broad chemokine recognition, we determined the crystal structure of EVA-ACA1001 in complex with the human chemokine CCL16. EVA-ACA1001 forms backbone-backbone interactions with the CC motif of CCL16, a conserved feature of all class A evasin-chemokine complexes. A hydrophobic pocket in EVA-ACA1001, formed by several aromatic side chains and the unique disulfide bond of class A3 evasins, accommodates the residue immediately following the CC motif (the "CC + 1 residue") of CCL16. This interaction is shared with EVA-AAM1001, the only other class A3 evasins characterized to date, suggesting it may represent a common mechanism that accounts for the broad recognition of CC chemokines by class A3 evasins.


Subject(s)
Models, Molecular , Humans , Animals , Ticks/chemistry , Ticks/metabolism , Crystallography, X-Ray , Binding Sites , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Arthropod Proteins/genetics , Protein Binding , Chemokines/chemistry , Chemokines/metabolism , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism
2.
Ageing Res Rev ; 97: 102315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679394

ABSTRACT

Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80-85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.


Subject(s)
Cellular Senescence , Lung Neoplasms , Humans , Cellular Senescence/physiology , Cellular Senescence/genetics , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology
3.
Nat Commun ; 14(1): 4204, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452046

ABSTRACT

Chemokines are key regulators of leukocyte trafficking and attractive targets for anti-inflammatory therapy. Evasins are chemokine-binding proteins from tick saliva, whose application as anti-inflammatory therapeutics will require manipulation of their chemokine target selectivity. Here we describe subclass A3 evasins, which are unique to the tick genus Amblyomma and distinguished from "classical" class A1 evasins by an additional disulfide bond near the chemokine recognition interface. The A3 evasin EVA-AAM1001 (EVA-A) bound to CC chemokines and inhibited their receptor activation. Unlike A1 evasins, EVA-A was not highly dependent on N- and C-terminal regions to differentiate chemokine targets. Structures of chemokine-bound EVA-A revealed a deep hydrophobic pocket, unique to A3 evasins, that interacts with the residue immediately following the CC motif of the chemokine. Mutations to this pocket altered the chemokine selectivity of EVA-A. Thus, class A3 evasins provide a suitable platform for engineering proteins with applications in research, diagnosis or anti-inflammatory therapy.


Subject(s)
Ticks , Animals , Ticks/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Chemokines/metabolism , Chemokines, CC/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
4.
J Biol Chem ; 298(10): 102382, 2022 10.
Article in English | MEDLINE | ID: mdl-35973511

ABSTRACT

Class A tick evasins are natural chemokine-binding proteins that block the signaling of multiple chemokines from the CC subfamily through their cognate receptors, thus suppressing leukocyte recruitment and inflammation. Development of tick evasins as chemokine-targeted anti-inflammatory therapeutics requires an understanding of the factors controlling their chemokine recognition and selectivity. To investigate the role of the evasin N-terminal region for chemokine recognition, we prepared chimeric evasins by interchanging the N-terminal regions of four class A evasins, including a newly identified evasin, EVA-RPU02. We show through chemokine binding analysis of the parental and chimeric evasins that the N-terminal region is critical for chemokine binding affinity and selectivity. Notably, we found some chimeras were unable to bind certain cognate chemokine ligands of both parental evasins. Moreover, unlike any natural evasins characterized to date, some chimeras exhibited specific binding to a single chemokine. These results indicate that the evasin N terminus interacts cooperatively with the "body" of the evasin to enable optimum chemokine recognition. Furthermore, the altered chemokine selectivity of the chimeras validates the approach of engineering the N termini of evasins to yield unique chemokine recognition profiles.


Subject(s)
Arthropod Proteins , Chemokines , Receptors, CXCR , Rhipicephalus , Salivary Proteins and Peptides , Animals , Arthropod Proteins/metabolism , Chemokines/metabolism , Protein Binding , Receptors, CXCR/metabolism , Rhipicephalus/metabolism , Signal Transduction , Salivary Proteins and Peptides/metabolism
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35217625

ABSTRACT

As natural chemokine inhibitors, evasin proteins produced in tick saliva are potential therapeutic agents for numerous inflammatory diseases. Engineering evasins to block the desired chemokines and avoid off-target side effects requires structural understanding of their target selectivity. Structures of the class A evasin EVA-P974 bound to human CC chemokine ligands 7 and 17 (CCL7 and CCL17) and to a CCL8-CCL7 chimera reveal that the specificity of class A evasins for chemokines of the CC subfamily is defined by conserved, rigid backbone-backbone interactions, whereas the preference for a subset of CC chemokines is controlled by side-chain interactions at four hotspots in flexible structural elements. Hotspot mutations alter target preference, enabling inhibition of selected chemokines. The structure of an engineered EVA-P974 bound to CCL2 reveals an underlying molecular mechanism of EVA-P974 target preference. These results provide a structure-based framework for engineering evasins as targeted antiinflammatory therapeutics.


Subject(s)
Arthropod Proteins/chemistry , Chemokines/metabolism , Inflammation/metabolism , Protein Engineering , Ticks/metabolism , Animals , Arthropod Proteins/metabolism , Protein Binding , Protein Conformation , Receptors, Chemokine/metabolism
6.
ScientificWorldJournal ; 2021: 3230351, 2021.
Article in English | MEDLINE | ID: mdl-34257624

ABSTRACT

Spondias pinnata (L.f.) Kurz. (family: Anacardiaceae) is a wild deciduous tree indigenous to southeast Asian countries. Different parts of this plant are used traditionally for the treatment and cure of various disorders and illnesses. S. pinnata leaves are used to prevent and treat diabetes in traditional Balinese medicine. However, scientific study on the antihyperglycemic effect of its leaves has not been reported yet. Therefore, this study aims to perform phytochemical screening and investigate the hypoglycemic potential of S. pinnata leaves extract. Preliminary phytochemical screening of the hydroethanolic extract was performed following the standard tests. In vivo hypoglycemic activity of the leaves extract was evaluated using normal and glucose-loaded rats. The results displayed the presence of phytochemical constituents such as saponins, phenolic compounds, flavonoids, and terpenoids. S. pinnata (500 mg/kg) and metformin (100 mg/kg) exhibited a significant (p < 0.05) decrease in blood glucose level at 1, 2, and 3 h in normal rats when compared to the control group. Metformin- (100 mg/kg)- and S. pinnata- (500 mg/kg)- treated groups showed a maximum decrease in the blood glucose level at 3 h after single-dose administration in the oral glucose tolerance test (OGTT). In conclusion, S. pinnata leaves possess a significant hypoglycemic activity in the animal model and thus support its traditional use to treat diabetes. Therefore, a detailed mechanism-based study and isolation of bioactive compounds from S. pinnata leaves would be beneficial in the future for the search of new hypoglycemic agents.


Subject(s)
Anacardiaceae/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Blood Glucose/drug effects , Glucose Tolerance Test , Male , Medicine, East Asian Traditional , Metformin/pharmacology , Nepal , Rats , Rats, Wistar
7.
PLoS One ; 14(8): e0221666, 2019.
Article in English | MEDLINE | ID: mdl-31461489

ABSTRACT

Sigma factors are key proteins that mediate the recruitment of RNA polymerase to the promoter regions of genes, for the initiation of bacterial transcription. Multiple sigma factors in a bacterium selectively recognize their cognate promoter sequences, thereby inducing the expression of their own regulons. In this paper, we report the crystal structure of the σ4 domain of Bacillus subtilis SigW bound to the -35 promoter element. Purine-specific hydrogen bonds of the -35 promoter element with the recognition helix α9 of the σ4 domain occurs at three nucleotides of the consensus sequence (G-35, A-34, and G'-31 in G-35A-34A-33A-32C-31C-30T-29). The hydrogen bonds of the backbone with the α7 and α8 of the σ4 domain occurs at G'-30. These results elucidate the structural basis of the selective recognition of the promoter by SigW. In addition, comparison of SigW structures complexed with the -35 promoter element or with anti-sigma RsiW reveals that DNA recognition and anti-sigma factor binding of SigW are mutually exclusive.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , Promoter Regions, Genetic , Sigma Factor/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Conserved Sequence , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Models, Molecular , Nucleic Acid Conformation , Sigma Factor/chemistry , Structural Homology, Protein
8.
PLoS One ; 12(3): e0174284, 2017.
Article in English | MEDLINE | ID: mdl-28319136

ABSTRACT

Bacillus subtilis SigW is localized to the cell membrane and is inactivated by the tight interaction with anti-sigma RsiW under normal growth conditions. Whereas SigW is discharged from RsiW binding and thus initiates the transcription of its regulon under diverse stress conditions such as antibiotics and alkaline shock. The release and activation of SigW in response to extracytoplasmic signals is induced by the regulated intramembrane proteolysis of RsiW. As a ZAS (Zinc-containing anti-sigma) family protein, RsiW has a CHCC zinc binding motif, which implies that its anti-sigma activity may be regulated by the state of zinc coordination in addition to the proteolytic cleavage of RsiW. To understand the regulation mode of SigW activity by RsiW, we determined the crystal structures of SigW in complex with the cytoplasmic domain of RsiW, and compared the conformation of the CHCC motif in the reduced/zinc binding and the oxidized states. The structures revealed that RsiW inhibits the promoter binding of SigW by interacting with the surface groove of SigW. The interaction between SigW and RsiW is not disrupted by the oxidation of the CHCC motif in RsiW, suggesting that SigW activity might not be regulated by the zinc coordination states of the CHCC motif.


Subject(s)
Bacterial Proteins/metabolism , Sigma Factor/metabolism , Amino Acid Sequence , Bacillus subtilis , Bacterial Proteins/genetics , Chromatography, Gel , Escherichia coli , Lasers , Light , Models, Molecular , Oxidation-Reduction , Promoter Regions, Genetic , Protein Binding , Protein Domains , Recombinant Proteins/metabolism , Scattering, Radiation , Sigma Factor/genetics , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...