Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Biol Bull ; 200(3): 344-50, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11441976

ABSTRACT

Noninvasive, self-referencing calcium (Ca2+) electrodes were used to study the mechanisms by which 5-hydroxytryptamine (5-HT) affects net Ca2+ flux across the sarcolemma of myocytes from ventricular trabeculae (from a marine gastropod, Busycon canaliculatum). Treatment of isolated trabeculae with 5-HT causes a net Ca2+ efflux, which is 30% blocked by verapamil. These findings suggest that the efflux is in part the result of a previous Ca2+ influx through L-type Ca2+ channels and is due to a rapid Ca2+ extrusion mechanism inherent to the sarcolemma of these myocytes. 5-HT-induced net Ca2+ efflux is also reduced by about 40% by treatment with a sodium (Na+)-free, lithium (Li+)-substituted saline, which shuts down the Na-Ca exchanger during Ca2+ extrusion. Cyclopiazonic acid (CPA), an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ ATPase, almost completely abolishes the 5-HT-induced net Ca2+ efflux, suggesting that the SR rather than the extracellular pool is the primary Ca2+ reservoir serving 5-HT-induced excitation.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium/metabolism , Heart/drug effects , Mollusca/physiology , Myocardium/metabolism , Serotonin/pharmacology , Verapamil/pharmacology , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Calcium Channel Agonists/pharmacology , Enzyme Inhibitors/pharmacology , Heart/physiology , Heart Ventricles/drug effects , In Vitro Techniques , Indoles/pharmacology , Ionophores/pharmacology , Mollusca/drug effects , Ventricular Function
2.
J Exp Biol ; 204(Pt 5): 887-96, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11171412

ABSTRACT

This review describes the various subtypes of gamma-aminobutyric acid (GABA) receptors found at the echinoderm neuromuscular junction (NMJ), based on pharmacological and physiological studies. The review focuses mainly on holothurian GABA receptors at the NMJ located between the radial nerve and longitudinal muscle of the body wall (LMBW) and compares them to GABA receptors described at other echinoderm NMJs. Since a primary action of GABA on the holothurian LMBW is to modulate contractile responses to the excitatory neurotransmitter, acetylcholine (ACh), the pharmacology of echinoderm nicotinic ACh receptors (nAChRs) and muscarinic ACh receptors (mAChRs) is also addressed. GABA responses have been described in the asteroids, echinoids and holothuroids but not in the other echinoderm classes. Some actions of GABA on echinoderm muscle include regulation of basal tone and spontaneous rhythmic contractions and modulation of cholinergic responses. Both GABA A and B receptor subtypes are present at the echinoderm NMJ, a feature also common to the arthropods, molluscs and chordates. Echinoderm GABA A receptors may mediate the excitatory responses to GABA. The GABA A receptor antagonist bicuculline has a paradoxical effect on contractility, stimulating large protracted contractions of the LMBW. The GABA A agonist muscimol potentiates cholinergic contractions of the holothurian LMBW. Another population of GABA receptors is inhibitory and is sensitive to the GABA B agonist baclofen and GABA B antagonists phaclofen and 2-OH-saclofen. The pre- and/or postsynaptic location of the GABA A and B receptors is not currently known. The folded GABA analogue 4-cis-aminocrotonic acid has no effect on the contractility of the holothurian LMBW so GABA C receptors are probably lacking in this preparation. Pharmacological studies have shown that distinct nAChRs and mAChRs are colocalized in numerous echinoderm muscle preparations. Most recently, nAChR agonists were used to characterize pharmacologically receptors at the holothurian LMBW that bind ACh. Nicotinic AChRs with unique pharmacological profiles are localized both pre- and postsynaptically at this NMJ, where their physiological action is to enhance muscle tone. Muscarinic agonists also have excitatory actions on the LMBW but their action is to stimulate phasic, rhythmic contractions of the muscle. The location of mAChRs at the echinoderm NMJ, however, is unknown. Since most of the studies described in the present review have used whole-mount preparations consisting largely of a combination of muscle fibers, neurons and connective tissue, it is extremely difficult to determine pharmacologically the exact location of the various receptor subtypes. Additional electrophysiological studies on isolated neurons and muscle fibers are therefore required to clearly define extra-, pre- and/or postsynaptic sites for the receptor subtypes at the echinoderm NMJ.


Subject(s)
Echinodermata , Neuromuscular Junction/chemistry , Receptors, Cholinergic/analysis , Receptors, GABA/analysis , Acetylcholine/pharmacology , Animals , Muscle Contraction/drug effects , Receptors, Cholinergic/drug effects , Receptors, GABA/drug effects , Receptors, Muscarinic/analysis , Receptors, Muscarinic/drug effects , Receptors, Nicotinic/analysis , Receptors, Nicotinic/drug effects , gamma-Aminobutyric Acid/pharmacology
3.
Article in English | MEDLINE | ID: mdl-11790330

ABSTRACT

Contractions of an echinoderm (sp. Sclerodactyla briareus) smooth muscle, the longitudinal muscle of the body wall (LMBW), were evoked by acetylcholine (ACh) and agonists: epibatidine, muscarine and nicotine (in order of force generation: ACh>muscarine=epibatidine>nicotine). ACh-induced contractions were blocked by atropine by 50%, and methoctramine, by 30%. ACh responses were also blocked by 25% by methyllycaconitine (MLA) but not by D-tubocurarine (dTC). Muscarine initiated large contractions that were completely blocked by atropine. To elucidate possible muscarinic ACh receptor (mAChR) subtypes, muscarinic agonists (oxotremorine, pilocarpine) and antagonists (methoctramine, pirenzepine) were tested. Oxotremorine, pilocarpine, and pirenzepine each enhanced resting tonus and potentiated ACh-induced contractions (order of potency: pilocarpine>oxotremorine=pirenzepine). Muscarine, oxotremorine or pirenzepine generated phasic, rhythmic contractions. Nicotine-induced contractions were almost completely blocked by dTC but were not altered by atropine. Large contractions evoked by epibatidine were potentiated by dTC whereas atropine had no effect on them. MLA blocked spontaneous rhythmicity. Cholinesterase inhibitors, neostigmine or physostigmine, caused marked potentiation of ACh-induced contractions and initiated rhythmic slow wave contractions in previously quiescent muscles. The present pharmacological evidence points to the co-existence of excitatory nicotinic ACh receptor (nAChRs) and mAChRs where nAChRs possibly modulate tone, and the mAChRs initiate and enhance rhythmicity.


Subject(s)
Muscle, Smooth/metabolism , Receptors, Cholinergic/metabolism , Sea Cucumbers/metabolism , Acetylcholine/pharmacology , Animals , Cholinesterase Inhibitors/pharmacology , In Vitro Techniques , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth/drug effects , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Receptors, Cholinergic/drug effects , Receptors, Muscarinic/drug effects , Receptors, Muscarinic/metabolism , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism
4.
Invert Neurosci ; 4(1): 1-8, 1999.
Article in English | MEDLINE | ID: mdl-12491068

ABSTRACT

This study provides pharmacological evidence for the presence of GABAergic neurons innervating the longitudinal muscle of the body wall (LMBW) of holothurians. Gamma-aminobutyric acid (GABA) A and B receptor subtypes were both present in this system and regulated spontaneous contractions as well as responses to acetylcholine (ACh) that stimulated contraction of the LMBW. GABA dose-dependently relaxed the resting tone of the LMBW. GABA (10(-5) M) inhibited ACh-induced (10(-4) M) contractions by 20%. The GABA B agonist, baclofen, relaxed the LMBW, an effect potentiated by GABA. Pretreatment with baclofen (10(-4) M) inhibited ACh (10(-4) M) contractions of the LMBW by 50%. Phaclofen, a GABA receptor B antagonist, caused a dose-dependent increase in resting tension. Phaclofen-induced (10(-5) M) contractions were reversed by the addition of GABA or baclofen (10(-4) M) and potentiated by the addition of another GABA B receptor antagonist, 2-hydroxy-saclofen (10(-5) M). Pretreatment with phaclofen (10(-5) M) caused a marked potentiation of ACh-induced (10(-4) M) contractions by 101%. 2-Hydroxy-saclofen (10(-5) M) had a toxic effect on the LMBW, rendering it completely unresponsive either to ACh or to a second exposure to GABA, and so exhibiting cross-desensitization. Muscimol, a GABA A receptor agonist, had no effect on the resting tension of the LMBW. Curiously, pretreatment of the muscle with muscimol (10(-5) M) potentiated ACh-evoked (10(-4) M) contractions by nearly 20%. Bicuculline (10(-5) M), a GABA A receptor antagonist, generated large, sustained contractions and partially blocked GABA-induced (10(-4) M) relaxation. Like 2-hydroxy-saclofen, bicuculline (10(-5) M) had a profound cross-desensitizing effect on the LMBW to subsequent exposures to GABA and ACh. ACh was unable to potentiate the sustained contractions induced by bicuculline.


Subject(s)
Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Sea Cucumbers/metabolism , gamma-Aminobutyric Acid/pharmacology , Acetylcholine/pharmacology , Animals , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , GABA-A Receptor Agonists , GABA-A Receptor Antagonists , GABA-B Receptor Agonists , GABA-B Receptor Antagonists , Muscle Contraction/physiology , Muscle, Smooth/metabolism , Organ Culture Techniques , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Receptors, GABA-B/drug effects , Receptors, GABA-B/metabolism
5.
J Comp Physiol B ; 166(4): 270-7, 1996.
Article in English | MEDLINE | ID: mdl-8810067

ABSTRACT

To determine possible sources of Ca2+ during excitation-contraction coupling in smooth muscle, a vibrating Ca2(+)-selective electrode was used to measure Ca2+ flux during the process of contraction. The smooth muscle model was the longitudinal muscle of the body wall of a sea cucumber Sclerodactyla briareus. Because acetylcholine caused slow contractions of the muscle that were inhibited by Ca2+ channel blockers diltiazem and verapamil in earlier mechanical studies, we chose a vibrating Ca2(+)-selective electrode as our method to test the hypothesis that acetylcholine may be stimulating Ca2+ influx across the sarcolemma, providing a Ca2+ source during excitation-contraction coupling. Acetylcholine treatment stimulated a net Ca2+ efflux that was both dose and time dependent. We then tested two L-type Ca2+ channel blockers, diltiazem and verapamil, and two non-specific Ca2+ blockers, cobalt (Co2+) and lanthanum (La3+) on acetylcholine-induced Ca2+ flux. All four Ca2+ blockers tested potently inhibited Ca2+ efflux induced by physiological doses of acetylcholine. We propose that the acetylcholine-induced Ca2+ efflux was the result of, first, Ca2+ influx through voltage-sensitive L-type Ca2+ channels, then the rapid extrusion of Ca2+ by an outwardly directed carrier such as the Na-Ca exchanger as suggested by Li+ substitution experiments. The vibrating Ca2+ electrode has provided new insights on the active and complex role the sarcolemma plays in Ca2+ homeostasis and regulating Ca2+ redistribution during excitation-contraction coupling.


Subject(s)
Acetylcholine/pharmacology , Calcium/metabolism , Microelectrodes , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Animals , Calcium/analysis , Calcium Channel Blockers/pharmacology , Cobalt/pharmacology , Diltiazem/pharmacology , Ion Transport/drug effects , Lanthanum/pharmacology , Lithium/pharmacology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Sarcolemma/drug effects , Sarcolemma/metabolism , Sea Cucumbers/metabolism , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL