Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 151(19): 194309, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31757157

ABSTRACT

Solvation of HCl at <100 K at the surface of nanoparticles of methanethiol, a sulfur derivative of methanol, was investigated by FTIR spectroscopy and on-the-fly molecular dynamics as implemented in the density functional code QUICKSTEP (which is part of the CP2K package). Some of the results have been further checked with MP2-level ab initio calculations. Unlike the HCl-CH3OH system that has been examined before, HCl on the surface or within methanethiol nanoparticles does not achieve an ionized form. Requirements for acid solvation/ionization are discussed in context with the results for methanol clusters.

2.
J Chem Phys ; 148(23): 234501, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29935504

ABSTRACT

The catalytic action of NH3 within the all-vapor approach for instant clathrate hydrate (CH) formation is studied using both FTIR spectroscopy and ab initio molecular dynamics simulations. A unique property of NH3, namely, the rapid abundant penetration and occupation of the water network, creates defects, particularly Bjerrum D-defects, in the hydrate frame that are generally stabilized by guest NH3 molecules in the cages. Furthermore, insertion of NH3 seriously disturbs the hydrate network where the guest NH3 molecules also make fluxional H-bonds with the host water molecules. These defects strongly facilitate a sub-second formation of the simple NH3 s-II gas hydrate at 160 K. FTIR spectra of aerosols of the NH3 s-II CH have been measured, and the displacement of both small and large cage NH3 guests by CO2 and tetrahydrofuran is examined.

3.
J Chem Phys ; 146(23): 234508, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28641420

ABSTRACT

High quality FTIR spectra of aerosols of NH3-THF and NH3-TMO binary clathrate hydrates (CHs) have been measured. Our recently developed all-vapor sub-second approach to clathrate-hydrate formation combined with computational studies has been used to identify vibrational spectroscopic signatures of NH3 within the gas hydrates. The present study shows that there are three distinct NH3 types, namely, classical small-cage NH3, nonclassical small-cage NH3, and NH3 within the hydrate network. The network ammonia does not directly trigger the non-classical CH structure. Rather, the ammonia within the network structure perturbs the water bonding, introducing orientational defects that are stabilized by small and/or large cage guest molecules through H-bonding. This unusual behavior of NH3 within CHs opens a possibility for catalytic action of NH3 during CH-formation. Furthermore, impacts over time of the small-cage NH3-replacement molecules CO2 and CH4 on the structure and composition of the ternary CHs have been noted.

4.
J Phys Chem A ; 119(34): 9018-26, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26225898

ABSTRACT

Recent years have yielded advances in the placement of unusual molecules as guests within clathrate hydrates (CHs) without severe distortion of the classic lattice structures. Reports describing systems for which observable but limited distortion does occur are available for methanol, ammonia, acetone, and small ether molecules. In these particular examples, the large-cage molecules often participate as non-classical guests H-bonded to the cage walls. Here, we expand the list of such components to include HCl/DCl and HBr as small-cage guests. Based on FTIR spectra of nanocrystalline CHs from two distinct preparative methods combined with critical insights derived from on-the-fly molecular dynamics and ab initio computational data, a coherent argument emerges that these strong acids serve as a source of molecular small-cage guests, ions, and orientational defects. Depending on the HCl/DCl content the ions, defects and molecular guests determine the CH structures, some of which form in sub-seconds via an all-vapor preparative method.

5.
J Chem Phys ; 141(18): 18C506, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25399171

ABSTRACT

Recent demonstrations of subsecond and microsecond timescales for formation of clathrate hydrate nanocrystals hint at future methods of control of environmental and industrial gases such as CO2 and methane. Combined results from cold-chamber and supersonic-nozzle [A. S. Bhabhe, "Experimental study of condensation and freezing in a supersonic nozzle," Ph.D. thesis (Ohio State University, 2012), Chap. 7] experiments indicate extremely rapid encagement of components of all-vapor pre-mixtures. The extreme rates are derived from (a) the all-vapor premixing of the gas-hydrate components and (b) catalytic activity of certain oxygenated organic large-cage guests. Premixing presents no obvious barrier to large-scale conditions of formation. Further, from sequential efforts of the groups of Trout and Buch, a credible defect-based model of the catalysis mechanism exists for guidance. Since the catalyst-generated defects are both mobile and abundant, it is often unnecessary for a high percentage of the cages to be occupied by a molecular catalyst. Droplets represent the liquid phase that bridges the premixed vapor and clathrate hydrate phases but few data exist for the droplets themselves. Here we describe a focused computational and FTIR spectroscopic effort to characterize the aerosol droplets of the all-vapor cold-chamber methodology. Computational data for CO2 and C2H2, hetero-dimerized with each of the organic catalysts and water, closely match spectroscopic redshift patterns in both magnitude and direction. Though vibrational frequency shifts are an order of magnitude greater for the acetylene stretch mode, both CO2 and C2H2 experience redshift values that increase from that for an 80% water-methanol solvent through the solvent series to approximately doubled values for tetrahydrofuran and trimethylene oxide (TMO) droplets. The TMO solvent properties extend to a 50 mol.% solution of CO2, more than an order of magnitude greater than for the water-methanol solvent mixture. The impressive agreement between heterodimer and experimental shift values throughout the two series encourages speculation concerning local droplet structures while the stable shift patterns appear to be useful indicators of the gas solubilities.

6.
J Chem Phys ; 140(16): 164505, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24784285

ABSTRACT

Methanol's property as a catalyst in the formation of gas clathrate hydrates has been recognized for several years and was recently employed in a broad ranging study [K. Shin, K. A. Udachin, I. L. Moudrakovski, D. M. Leek, S. Alavi, C. I. Ratcliffe, and J. A. Ripmeester, Proc. Natl. Acad. Sci. U.S.A. 110, 8437 (2013)]. A new measure of that activity is offered here from comparative rates of formation of methanol (MeOH) clathrate hydrates within our all-vapor aerosol methodology for which tetrahydrofuran (THF) and other small ethers have set a standard for catalytic action. We have previously described numerous examples of the complete conversion of warm all-vapor mixtures to aerosols of gas clathrate hydrates on a sub-second time scale, generally with the catalyst confined primarily to the large cage of either structure-I (s-I) or structure-II (s-II) hydrates. THF has proven to be the most versatile catalyst for the complete subsecond conversion of water to s-II hydrate nanocrystals that follows pulsing of appropriate warm vapor mixtures into a cold chamber held in the 140-220 K range. Here, the comparative ability of MeOH to catalyze the formation of s-I hydrates in the presence of a small-cage help-gas, CO2 or acetylene, is examined. The surprising result is that, in the presence of either help gas, CH-formation rates appear largely unchanged by a complete replacement of THF by MeOH in the vapor mixtures for a chamber temperature of 170 K. However, as that temperature is increased, the dependence of effective catalysis by MeOH on the partial pressure of help gases also increases. Nevertheless, added MeOH is shown to markedly accelerate the s-II THF-CO2 CH formation rate at 220 K.

7.
J Chem Phys ; 139(2): 021107, 2013 Jul 14.
Article in English | MEDLINE | ID: mdl-23862921

ABSTRACT

Studies of catalyzed all-vapor gas-hydrate formation on a sub-second timescale have been extended with a special focus on liquid-droplet compositions at the instant of hydrate crystallization. This focus has been enabled by inclusion of methanol in the all-vapor mixture. This slows droplet to gas-hydrate conversion near 200 K to a time scale suited for standard FTIR sampling. Such droplet data are sought as a guide to ongoing efforts to reduce the amount of guest catalyst required for instant formation of the gas hydrates. For the same reason, all-vapor sampling has also been extended to the generation of long-lived liquid droplets with reduced or no water content. Observations of single-solvent droplets show that surprising quantities of gas molecules are trapped during rapid droplet growth. For example, CO2 is trapped at levels near 50 mol. % in droplets of acetone, tetrahydrofuran, or trimethylene oxide formed under CO2 pressures of several Torr in a cold-chamber at 170 K. Less but significant amounts of gas are trapped at higher temperatures, or in methanol or water-methanol droplets. The droplet metastability appears to commonly lead to formation of bubbles larger than the original nanodroplets. Besides serving as a guide for the all-vapor gas-hydrate studies, the semiquantitative evidence of extensive trapping of gases is expected to have a role in future studies of atmospheric aerosols.

8.
Phys Chem Chem Phys ; 14(2): 1048-9; discussion 1050-3, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22089033

ABSTRACT

On the basis of NEXAFS, photoemission and FTIR spectra of ice films with low doses of adsorbed HCl, the authors of the PCCP paper "HCl adsorption on ice at low temperature: a combined X-ray absorption, photoemission and infrared study", Phys. Chem. Chem. Phys., 2011, 13, 7142, have come to conclusions regarding the behavior of submonolayer amounts of HCl at 50 K that contradict published results of the authors of this Comment. Our purpose is to argue that the conclusion, attributed going forward to PLML (authors' initials), that nearly 100% of HCl ionizes for dosage levels near to 0.16 monolayer (ML) or 0.3 Langmuir (L) at 50 K is questionable. Rather, we reaffirm our conclusions of much lower levels of ionization for similar temperatures and HCl dosages based on reactive ion scattering (RIS) and low energy sputtering (LES) data for ice films and FTIR spectra of ice nanocrystals. A second current paper by Ayotte et al., J. Phys. Chem. A, 2011, 115, 6002, that largely parallels in method and results the RAIR spectroscopy of PLML, is also given special notice.

9.
J Chem Phys ; 135(14): 141103, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22010686

ABSTRACT

A simple method has been developed for the measurement of high quality FTIR spectra of aerosols of gas-hydrate nanoparticles. The application of this method enables quantitative observation of gas hydrates that form on subsecond timescales using our all-vapor approach that includes an ether catalyst rather than high pressures to promote hydrate formation. The sampling method is versatile allowing routine studies at temperatures ranging from 120 to 210 K of either a single gas or the competitive uptake of different gas molecules in small cages of the hydrates. The present study emphasizes hydrate aerosols formed by pulsing vapor mixtures into a cold chamber held at 160 or 180 K. We emphasize aerosol spectra from 6 scans recorded an average of 8 s after "instantaneous" hydrate formation as well as of the gas hydrates as they evolve with time. Quantitative aerosol data are reported and analyzed for single small-cage guests and for mixed hydrates of CO(2), CH(4), C(2)H(2), N(2)O, N(2), and air. The approach, combined with the instant formation of gas hydrates from vapors only, offers promise with respect to optimization of methods for the formation and control of gas hydrates.

10.
Phys Chem Chem Phys ; 13(44): 19707-13, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-21850310

ABSTRACT

A melding of modern experimental results descriptive of fundamental ion defect properties of ice is presented as a logical basis of a mechanism for the preferential transfer of positive charge from large to small colliding ice particles. The result may relate to the electrification of storm clouds. It is broadly agreed that such localized charge transfer during collision of small upwardly mobile ice particles with falling ice granules (i.e., graupel/hail) can lead to macroscopic charge separation capable of initiating lightning strikes during the expansion stage of a storm cell. Though the larger particles are thought to become negatively charged during the collisions neither a generally favored charge-exchange agent nor a preferred mechanism for the directional particle-to-particle charge transfer exists. Nevertheless, should ionic point defects of ice play a key role, the fundamental properties of ice defects considered here must apply. They include: (1) above 140 K protons move readily within and on the surface of ice while hydroxide ions are orders-of-magnitude less mobile, (2) whether generated by dissociation of HCl buried in ice, during neat ice particle growth, or at platinum-ice interfaces, interior protons move to and apparently collect at the ice-vacuum interface, and (3) proton activity and populations are orders-of-magnitude greater at the surface of ice films and free-standing ice particles than in the interior. From these fundamentals an untested argument is developed that within an ensemble of free floating ice particles the proton density at the surface is greater for larger particles. This implies a plausible proton-based mechanism that is consistent with current concepts of ice particle charging through collisions.

11.
J Phys Chem A ; 115(23): 5709-14, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21671667
12.
J Phys Chem A ; 115(23): 5822-32, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21171641

ABSTRACT

Low-temperature, low-pressure studies of clathrate hydrates (CHs) have revealed that small ether and other proton-acceptor guests greatly enhance rates of clathrate hydrate nucleation and growth; rapid formation and transformations are enabled at temperatures as low as 110 K, and cool moist vapors containing small ether molecules convert to mixed-gas CHs on a subsecond time scale. More recently, FTIR spectroscopic studies of the tetrahydrofuran (THF)-HCN double clathrate hydrate revealed a sizable frequency shift accompanied by a four-fold intensification of the C-N stretch-mode absorption of the small cage HCN, behavior that is enhanced by cooling and which correlates precisely with similar significant changes of the ether C-O/C-C stretch modes. These temperature-dependent correlated changes in the infrared spectra have been attributed to equilibrated extensive hydrogen bonding of neighboring large- and small-cage guest molecules with water molecules of the intervening wall. An ether guest functions as a proton acceptor, particularly so when complemented by the action of a proton-donor (HCN)/electron-acceptor (SO(2)) small-cage guest. Because guest molecules of the classic clathrate hydrates do not participate in hydrogen bonds with the host water, this H-bonding of guests has been labeled "nonclassical". The present study has been enriched by comparing observed FTIR spectra with high-level molecular orbital computational results for guests and hydrogen-bonded guest-water dimers. Vibrational frequency shifts, from heterodimerization of ethers and water, correlate well with the corresponding observed classical to nonclassical shifts. The new spectroscopic data reveal that the nonclassical structures can contribute at observable levels to CH infrared spectra for a remarkable range of temperatures and choice of guest molecules. By the choice of guest molecules, it is now possible to select the abundance levels of nonclassical configurations, ranging from ∼0 to 100%, for a given temperature. This ability is expected to hasten understanding of the role of guest-induced nonclassical structures in the acceleration or inhibition of the rates of CH formation and transformation.

13.
J Phys Chem A ; 114(50): 13129-33, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21105676

ABSTRACT

The rapid conversion of vapor mixtures containing the gases CO(2), H(2)S, and HCN to clathrate hydrates was reported recently. The novel method is based on the pulsing of warm vapor mixtures, including a carrier gas, into a cold condensation chamber. With cooling, the vapors, which also include ∼1% water and either tetrahydrofuran or trimethylene oxide as a catalyst, nucleate aqueous solution nanodroplets that, on a millisecond time scale, crystallize as hydrate nanoparticles that consume 100% of the water. Humid air approximates the content of mixtures used successfully in the vapor-to-hydrate conversions. FTIR spectra are examined for gas hydrates formed directly from air and air enriched with CO(2), as well as hydrate particles for which CO(2)(g) serves as both guest and aerosol medium. In each instance all of the water in the condensed phase converts to a clathrate hydrate. The subsecond ether-catalyzed formation of the hydrates near 230 K requires only a few percent of the CO(2) pressure used in conventional processes that yield fractional amounts of gas hydrates on an hour time scale in the same temperature range.

14.
Phys Chem Chem Phys ; 11(44): 10245-65, 2009 Nov 28.
Article in English | MEDLINE | ID: mdl-19890506

ABSTRACT

Clathrate hydrates (CHs) are inclusion compounds in which "tetrahedrally" bonded H(2)O forms a crystalline host lattice composed of a periodic array of cages. The structure is stabilized by guest particles which occupy the cages and interact with cage walls via van der Waals interactions. A host of atoms or small molecules can act as guests; here the focus is on guests that are capable of strong to intermediate H-bonding to water (small ethers, H(2)S, etc.) but nevertheless "choose" this hydrate crystal form in which H-bonding is absent from the equilibrium crystal structure. These CHs can form by exposure of ice to guest molecules at temperatures as low as 100-150 K, at the (low) guest saturation pressure. This is in contrast to the "normal" CHs whose formation typically requires temperatures well above 200 K and at least moderate pressures. The experimental part of this study addresses formation kinetics of CHs with H-bonding guests, as well as transformation kinetics between different CH forms, studied by CH infrared spectroscopy. The accompanying computational study suggests that the unique properties of this family of CHs are due to exceptional richness of the host lattice in point defects, caused by defect stabilization by H-bonding of water to the guests.

15.
J Chem Phys ; 127(9): 091101, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17824725

ABSTRACT

Spectroscopic studies are presented of H-D isotopic exchange in the interior of ice nanocrystals. The exchange process is dominated by ionic and orientational defects long viewed as governing the electrical properties of ice. A new finding that interior exchange rates can be controlled by acidic and basic adsorbates is evidence that the defects originate at the ice surface. In particular, it is argued that interior isotopic exchange is a reflection of proton concentrations equilibrated at the ice surface.

16.
Phys Chem Chem Phys ; 9(34): 4736-47, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17712453

ABSTRACT

Autoionization of water which gives rise to its pH is one of the key properties of aqueous systems. Surfaces of water and aqueous electrolyte solutions are traditionally viewed as devoid of inorganic ions; however, recent molecular simulations and spectroscopic experiments show the presence of certain ions including hydronium in the topmost layer. This raises the question of what is the pH (defined using proton concentration in the topmost layer) of the surface of neat water. Microscopic simulations and measurements with atomistic resolution show that the water surface is acidic due to a strong propensity of hydronium (but not of hydroxide) for the surface. In contrast, macroscopic experiments, such as zeta potential and titration measurements, indicate a negatively charged water surface interpreted in terms of preferential adsorption of OH(-). Here we review recent simulations and experiments characterizing autoionization at the surface of liquid water and ice crystals in an attempt to present and discuss in detail, if not fully resolve, this controversy.


Subject(s)
Hydrogen-Ion Concentration , Ions/chemistry , Models, Chemical , Models, Molecular , Surface Properties , Water/chemistry , Computer Simulation
17.
Proc Natl Acad Sci U S A ; 104(18): 7342-7, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17452650

ABSTRACT

Water autoionization reaction 2H2O --> H3O- + OH- is a textbook process of basic importance, resulting in pH = 7 for pure water. However, pH of pure water surface is shown to be significantly lower, the reduction being caused by proton stabilization at the surface. The evidence presented here includes ab initio and classical molecular dynamics simulations of water slabs with solvated H3O+ and OH- ions, density functional studies of (H2O)(48)H+ clusters, and spectroscopic isotopic-exchange data for D2O substitutional impurities at the surface and in the interior of ice nanocrystals. Because H3O+ does, but OH- does not, display preference for surface sites, the H2O surface is predicted to be acidic with pH < 4.8. For similar reasons, the strength of some weak acids, such as carbonic acid, is expected to increase at the surface. Enhanced surface acidity can have a significant impact on aqueous surface chemistry, e.g., in the atmosphere.


Subject(s)
Acids/chemistry , Water/chemistry , Computer Simulation , Deuterium Exchange Measurement , Hydrogen-Ion Concentration
18.
J Phys Chem B ; 110(43): 21751-63, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17064136

ABSTRACT

Condensed-phase solvation of HCl on and within methanol nanoparticles was investigated by Fourier transform infrared (FTIR) spectroscopy, on-the-fly molecular dynamics as implemented in the density functional code Quickstep (which is part of the CP2K package), and ab initio calculations. Adsorption and solvation stages are identified and assigned with the help of calculated infrared spectra obtained from the simulations. The results have been further checked with MP2-level ab initio calculations. The range of acid solvation states extends from the single-coordinated slightly stretched HCl to proton-sharing with Zundel-like methanol O...H+...X- states, and finally to MeOH2+...Cl- units with full proton transfer. Furthermore, once the proton moves to methanol, it is mobilized along methanol molecular chains. Since the proton dynamics reflects the evolving local structures, the "proton" spectra display broad bands usually with underlying continua.

19.
J Phys Chem A ; 110(5): 1901-6, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451023

ABSTRACT

A Fourier transform infrared investigation of the rates and energetics of conversion of ice nanocrystals within 3-D arrays to ether clathrate-hydrate (CH) particles at approximately 120 K is reported. After an induction period, apparently necessitated by relatively slow nucleation of the CH phase, the well-established shrinking-core model of particle-adsorbate reaction applies to these conversions in the presence of an abundance of adsorbed ether. This implies that the transport of the ether adsorbate through the product crust encasing a reacting particle core (a necessary aspect of a particle reaction mechanism) is the rate-controlling factor. Diffusion moves adsorbed reactant molecules to the reaction zone at the interface of the ice core with the product (CH) crust. The results indicate that ether hydrate formation rates near 120 K resemble rates for gas hydrates measured near 260 K, implying rates greater by many orders of magnitude for comparable temperatures. A surprising secondary enhancement of ether CH-formation rates by the simultaneous incorporation of simple small gas molecules (N2, CO2, CH4, CO, and N2O) has also been quantified in this study. The rapid CH formation at low temperatures is conjectured to derive from defect-facilitated transport of reactants to an interfacial reaction zone, with the defect populations enhanced through transient H bonding of guest-ether proton-acceptor groups with O-H groups of the hydrate cage walls.

20.
J Phys Chem B ; 109(8): 3392-401, 2005 Mar 03.
Article in English | MEDLINE | ID: mdl-16851370

ABSTRACT

This FTIR study focuses on solid-state chemistry associated with formation and interconversion of the ionic HX (X = Cl, Br) hydrates. Kinetic data are reported for conversions of ice nanocrystal arrays exposed to the saturation pressure of the acids in the 110 approximately 125 K range. The product is amorphous acid dihydrate in the case of HBr, and amorphous monohydrate for HCl. The rate-determining step is identified as HX diffusion through the hydrate product crust toward the interfacial reaction zone, rather than diffusion through ice, as commonly believed. Slowing of the conversion process is thus observed with increasing thickness of the crust. The diffusion coefficient (D(e)) and activation energy values for HX diffusion through the hydrates were evaluated with the help of the shrinking-core model. Hydrate crystallization occurs as a separate step, upon heating above 130 K. Subsequently, rates of reversible transitions between crystal di- and monohydrates were observed upon exposure to acid vapor and acid evacuation. In conversion from di- to monohydrate, the rate slows after fast formation of several layers; subsequently, diffusion through the product crust appears to be the rate-controlling step. The activation energy for HBr diffusion through crystal dihydrate is found to be significantly higher than that for the amorphous analogue. Conjecture is offered for a molecular mechanism of HX transport through the crystal hydrate, based on (i) spectroscopic/computational evidence for the presence of molecular HX bonded to X(-) in each of the ionic hydrate phases and (ii) the relative E(a) values found for HBr and HCl diffusion. Monte Carlo modeling suggests acid transport to the reaction zone along boundaries between "nanocrystallites" generated by multiple hydrate nucleation events at the particle surfaces. The reverse conversion, of crystalline monohydrate particles to the dihydrate phase, as well as dihydrate to trihydrate, displays nearly constant rate throughout the particle conversion; suggesting desorption of HX from the particle surface as the rate-limiting factor. Like for D(e), the activation energies for desorption were found to be approximately 20% greater for HCl than HBr for related hydrate phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...