Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 1(9): 1878-86, 2009 Sep.
Article in English | MEDLINE | ID: mdl-20160937

ABSTRACT

It is becoming increasingly apparent that the architecture and mechanical properties of scaffolds, particularly with respect to mimicking features of natural tissues, are important for tissue engineering applications. Acrylated poly(glycerol sebacate) (Acr-PGS) is a material that can be cross-linked upon exposure to ultraviolet light, leading to networks with tunable mechanical and degradation properties through simple changes during Acr-PGS synthesis. For example, the number of acrylate functional groups on the macromer dictates the concentration of cross-links formed in the resulting network. Three macromers were synthesized that form networks that vary dramatically with respect to their tensile modulus ( approximately 30 kPa to 6.6 MPa) and degradation behavior ( approximately 20-100% mass loss at 12 weeks) based on the extent of acrylation ( approximately 1-24%). These macromers were processed into biodegradable fibrous scaffolds using electrospinning, with gelatin as a carrier polymer to facilitate fiber formation and cell adhesion. The resulting scaffolds were also diverse with respect to their mechanics (tensile modulus ranging from approximately 60 kPa to 1 MPa) and degradation ( approximately 45-70% mass loss by 12 weeks). Mesenchymal stem cell adhesion and proliferation on all fibrous scaffolds was indistinguishable from those of controls. The scaffolds showed similar diversity when implanted on the surface of hearts in a rat model of acute myocardial infarction and demonstrated a dependence on the scaffold thickness and chemistry in the host response. In summary, these diverse scaffolds with tailorable chemical, structural, mechanical, and degradation properties are potentially useful for the engineering of a wide range of soft tissues.


Subject(s)
Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry , Decanoates/chemistry , Glycerol/analogs & derivatives , Polymers/chemistry , Animals , Biodegradation, Environmental , Cell Adhesion , Elastomers/chemistry , Electrochemistry/methods , Glycerol/chemistry , Heart/physiology , Mesoderm/metabolism , Molecular Weight , Myocardial Infarction/metabolism , Rats , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...