Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(5): e0174622, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36036514

ABSTRACT

Cerebral malaria is a severe complication of Plasmodium falciparum infection characterized by the loss of blood-brain barrier (BBB) integrity, which is associated with brain swelling and mortality in patients. P. falciparum-infected red blood cells and inflammatory cytokines, like tumor necrosis factor alpha (TNF-α), have been implicated in the development of cerebral malaria, but it is still unclear how they contribute to the loss of BBB integrity. Here, a combination of transcriptomic analysis and cellular assays detecting changes in barrier integrity and endothelial activation were used to distinguish between the effects of P. falciparum and TNF-α on a human brain microvascular endothelial cell (HBMEC) line and in primary human brain microvascular endothelial cells. We observed that while TNF-α induced high levels of endothelial activation, it only caused a small increase in HBMEC permeability. Conversely, P. falciparum-infected red blood cells (iRBCs) led to a strong increase in HBMEC permeability that was not mediated by cell death. Distinct transcriptomic profiles of TNF-α and P. falciparum in HBMECs confirm the differential effects of these stimuli, with the parasite preferentially inducing an endoplasmic reticulum stress response. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics. IMPORTANCE Cerebral malaria is a severe complication of Plasmodium falciparum infection that causes the loss of blood-brain barrier integrity and frequently results in death. Here, we compared the effect of P. falciparum-infected red blood cells and inflammatory cytokines, like TNF-α, in the loss of BBB integrity. We observed that while TNF-α induced a small increase in barrier permeability, P. falciparum-infected red blood cells led to a severe loss of barrier integrity. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics.


Subject(s)
Malaria, Cerebral , Malaria, Falciparum , Humans , Plasmodium falciparum/metabolism , Malaria, Cerebral/parasitology , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Endothelial Cells/metabolism , Malaria, Falciparum/parasitology , Brain/parasitology , Blood-Brain Barrier , Cytokines/metabolism
2.
Cell Host Microbe ; 30(6): 786-797.e8, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35413267

ABSTRACT

Trichuris nematodes reproduce within the microbiota-rich mammalian intestine and lay thousands of eggs daily, facilitating their sustained presence in the environment and hampering eradication efforts. Here, we show that bacterial byproducts facilitate the reproductive development of nematodes. First, we employed a pipeline using the well-characterized, free-living nematode C. elegans to identify microbial factors with conserved roles in nematode reproduction. A screen for E. coli mutants that impair C. elegans fertility identified genes in fatty acid biosynthesis and ethanolamine utilization pathways, including fabH and eutN. Additionally, Trichuris muris eggs displayed defective hatching in the presence of fabH- or eutN-deficient E. coli due to reduced arginine or elevated aldehydes, respectively. T. muris reared in gnotobiotic mice colonized with these E. coli mutants displayed morphological defects and failed to lay viable eggs. These findings indicate that microbial byproducts mediate evolutionarily conserved transkingdom interactions that impact the reproductive fitness of distantly related nematodes.


Subject(s)
Escherichia coli , Nematoda , Animals , Caenorhabditis elegans/microbiology , Genetic Fitness , Mammals , Mice , Trichuris/microbiology
3.
PLoS Pathog ; 15(12): e1008066, 2019 12.
Article in English | MEDLINE | ID: mdl-31841569

ABSTRACT

Helminth infection and dietary intake can affect the intestinal microbiota, as well as the immune system. Here we analyzed the relationship between fecal microbiota and blood profiles of indigenous Malaysians, referred to locally as Orang Asli, in comparison to urban participants from the capital city of Malaysia, Kuala Lumpur. We found that helminth infections had a larger effect on gut microbial composition than did dietary intake or blood profiles. Trichuris trichiura infection intensity also had the strongest association with blood transcriptional profiles. By characterizing paired longitudinal samples collected before and after deworming treatment, we determined that changes in serum zinc and iron levels among the Orang Asli were driven by changes in helminth infection status, independent of dietary metal intake. Serum zinc and iron levels were associated with changes in the abundance of several microbial taxa. Hence, there is considerable interplay between helminths, micronutrients and the microbiota on the regulation of immune responses in humans.


Subject(s)
Diet , Gastrointestinal Microbiome , Helminthiasis/blood , Helminthiasis/microbiology , Host-Parasite Interactions/physiology , Humans , Iron/blood , Malaysia , RNA/blood , Zinc/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...