Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 102(4-1): 043212, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212701

ABSTRACT

In this work, we present results from experiments capable of producing and measuring the propagation of multiple successive, copropagating shocks across an unstable planar interface, where the shocks are independently driven and separately controllable, enabling the study of this important phenomenon. Copropagating shocks play a significant role in a wide range of systems involving stratified media subject to a shock, and exhibit different physical characteristics compared to counterpropagating shocks. Existing techniques, however, preclude copropagating shocks, so experiments to date have been limited to the study of counterpropagating shocks. We address this previous limitation and open a physical parameter space for study using a new hohlraum platform on the National Ignition Facility. Initial experimental results are presented together with comparisons from numerical simulations.

3.
Phys Rev Lett ; 117(22): 225001, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27925731

ABSTRACT

Using a large volume high-energy-density fluid shear experiment (8.5 cm^{3}) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.

4.
Rev Sci Instrum ; 85(9): 093501, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25273720

ABSTRACT

A very large area (7.5 mm(2)) laser-driven x-ray backlighter, termed the Big Area BackLighter (BABL) has been developed for the National Ignition Facility (NIF) to support high energy density experiments. The BABL provides an alternative to Pinhole-Apertured point-projection Backlighting (PABL) for a large field of view. This bypasses the challenges for PABL in the equatorial plane of the NIF target chamber where space is limited because of the unconverted laser light that threatens the diagnostic aperture, the backlighter foil, and the pinhole substrate. A transmission experiment using 132 kJ of NIF laser energy at a maximum intensity of 8.52 × 10(14) W/cm(2) illuminating the BABL demonstrated good conversion efficiency of >3.5% into K-shell emission producing ~4.6 kJ of high energy x rays, while yielding high contrast images with a highly uniform background that agree well with 2D simulated spectra and spatial profiles.

SELECTION OF CITATIONS
SEARCH DETAIL
...