Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(22)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38084805

ABSTRACT

Binary mixtures of water with lower alcohols display non-linear phase behaviors upon mixing, which are attributed to potential cluster formation at the molecular level. Unravelling such elusive structures requires investigation of hydrogen-bonding sub-nanosecond dynamics. We employ high-resolution neutron time-of-flight spectroscopy with polarization analysis in combination with selective deuteration to study the concentration-dependent structural dynamics in the water rich part of the phase diagram of water-ethanol mixtures. This method enables simultaneous access to atomic correlations in space and time and allows us to separate spatially incoherent scattering probing self-diffusion of the ethanol fraction from the coherent scattering probing collective diffusion of the water network as a whole. Our observations indicate an enhanced rigidity of the hydrogen bond network at the mesoscopic length scale compared to the molecular scale as the ethanol fraction increases, which is consistent with the hypothesis of clusters.

2.
J Chem Phys ; 158(18)2023 May 14.
Article in English | MEDLINE | ID: mdl-37154281

ABSTRACT

By using time-of-flight neutron spectroscopy with polarization analysis, we have separated coherent and incoherent contributions to the scattering of deuterated tetrahydrofuran in a wide scattering vector (Q)-range from meso- to inter-molecular length scales. The results are compared with those recently reported for water to address the influence of the nature of inter-molecular interactions (van der Waals vs hydrogen bond) on the dynamics. The phenomenology found is qualitatively similar in both systems. Both collective and self-scattering functions are satisfactorily described in terms of a convolution model that considers vibrations, diffusion, and a Q-independent mode. We observe a crossover in the structural relaxation from being dominated by the Q-independent mode at the mesoscale to being dominated by diffusion at inter-molecular length scales. The characteristic time of the Q-independent mode is the same for collective and self-motions and, contrary to water, faster and with a lower activation energy (≈1.4 Kcal/mol) than the structural relaxation time at inter-molecular length scales. This follows the macroscopic viscosity behavior. The collective diffusive time is well described by the de Gennes narrowing relation proposed for simple monoatomic liquids in a wide Q-range entering the intermediate length scales, in contraposition to the case of water.

SELECTION OF CITATIONS
SEARCH DETAIL
...