Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 710: 149881, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38583233

ABSTRACT

Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, evidently mediated by a cysteine residue in the carboxy region of the protein. In contrast to MASL, members of the other group do not dimerize under nonreducing conditions. These data also indicate that MASL is composed of 4 isoforms with an identical amino acid sequence, but unique glycosylation sites. We also produced a novel recombinant soluble human PDPN receptor (shPDPN) with 17 threonine residues glycosylated with sialic acid moieties with potential to act as a ligand trap that inhibits OSCC cell growth and motility. In addition, we report here that MASL targets PDPN with very strong binding kinetics in the nanomolar range. Moreover, we confirm that MASL can inhibit the growth and motility of human oral squamous cell carcinoma (OSCC) cells that express the PDPN receptor. Taken together, these data characterize M. amurensis lectins into two major groups based on their intrinsic properties, clarify the composition of MASL and its subunit isoform sequence and glycosylation sites, define sialic acid modifications on the PDPN receptor and its ability to act as a ligand trap, quantitate MASL binding to PDPN with KD in the nanomolar range, and verify the ability of MASL to serve as a potential anticancer agent.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , N-Acetylneuraminic Acid/metabolism , Maackia/chemistry , Maackia/metabolism , Mouth Neoplasms/pathology , Chromatography, Liquid , Ligands , Tandem Mass Spectrometry , Lectins/pharmacology , Antineoplastic Agents/pharmacology , Sequence Analysis , Cell Movement
2.
Anal Chem ; 96(17): 6534-6539, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38647218

ABSTRACT

With current trends in proteomics, especially regarding clinical and low input (to single cell) samples, it is increasingly important to both maximize the throughput of the analysis and maintain as much sensitivity as possible. The new generation of mass spectrometers (MS) are taking a huge leap in sensitivity, allowing analysis of samples with shorter liquid chromatography (LC) methods while digging as deep in the proteome. However, the throughput can be doubled by implementing a dual column nano-LC-MS configuration. For this purpose, we used a dual-column setup with a two-outlet electrospray source and compared it to a classic dual-column setup with a single-outlet source.


Subject(s)
Nanotechnology , Proteomics , Spectrometry, Mass, Electrospray Ionization , Proteomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Humans , Chromatography, Liquid/methods , High-Throughput Screening Assays/methods
3.
J Proteome Res ; 23(6): 2078-2089, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38666436

ABSTRACT

Data-independent acquisition (DIA) has become a well-established method for MS-based proteomics. However, the list of options to analyze this type of data is quite extensive, and the use of spectral libraries has become an important factor in DIA data analysis. More specifically the use of in silico predicted libraries is gaining more interest. By working with a differential spike-in of human standard proteins (UPS2) in a constant yeast tryptic digest background, we evaluated the sensitivity, precision, and accuracy of the use of in silico predicted libraries in data DIA data analysis workflows compared to more established workflows. Three commonly used DIA software tools, DIA-NN, EncyclopeDIA, and Spectronaut, were each tested in spectral library mode and spectral library-free mode. In spectral library mode, we used independent spectral library prediction tools PROSIT and MS2PIP together with DeepLC, next to classical data-dependent acquisition (DDA)-based spectral libraries. In total, we benchmarked 12 computational workflows for DIA. Our comparison showed that DIA-NN reached the highest sensitivity while maintaining a good compromise on the reproducibility and accuracy levels in either library-free mode or using in silico predicted libraries pointing to a general benefit in using in silico predicted libraries.


Subject(s)
Computer Simulation , Proteomics , Software , Workflow , Proteomics/methods , Proteomics/statistics & numerical data , Humans , Reproducibility of Results , Data Analysis , Peptide Library
4.
MAbs ; 15(1): 2210709, 2023.
Article in English | MEDLINE | ID: mdl-37211816

ABSTRACT

As small and stable high-affinity antigen binders, VHHs boast attractive characteristics both for therapeutic use in various disease indications, and as versatile reagents in research and diagnostics. To further increase the versatility of VHHs, we explored the VHH scaffold in a structure-guided approach to select regions where the introduction of an N-glycosylation N-X-T sequon and its associated glycan should not interfere with protein folding or epitope recognition. We expressed variants of such glycoengineered VHHs in the Pichia pastoris GlycoSwitchM5 strain, allowing us to pinpoint preferred sites at which Man5GlcNAc2-glycans can be introduced at high site occupancy without affecting antigen binding. A VHH carrying predominantly a Man5GlcNAc2 N-glycan at one of these preferred sites showed highly efficient, glycan-dependent uptake by Mf4/4 macrophages in vitro and by alveolar lung macrophages in vivo, illustrating one potential application of glyco-engineered VHHs: a glycan-based targeting approach for lung macrophage endolysosomal system delivery. The set of optimal artificial VHH N-glycosylation sites identified in this study can serve as a blueprint for targeted glyco-engineering of other VHHs, enabling site-specific functionalization through the rapidly expanding toolbox of synthetic glycobiology.


Subject(s)
Single-Domain Antibodies , Single-Domain Antibodies/genetics , Antigens , Epitopes , Macrophages
5.
Int J Pharm ; 621: 121772, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35487399

ABSTRACT

Globally, over 2 billion people suffer from vision impairment. Despite complex multifactorial etiology, advanced glycation end products are involved in the pathogenesis of many causative age- and diabetes-related eye diseases. Deglycating enzyme fructosamine-3-kinase (FN3K) was recently proposed as a potential therapeutic, but for further biopharmaceutical development, knowledge on its manufacturability and stability and mobility in the vitreous fluid of the eye is indispensable. We evaluated recombinant production of FN3K in two host systems, and its diffusion behavior in both bovine and human vitreous. Compared to Escherichia coli, intracellular production in Pichia pastoris yielded more and higher purity FN3K. The yeast-produced enzyme was used in a first attempt to use fluorescence correlation spectroscopy to study protein mobility in non-sonicated bovine vitreous, human vitreous, and intact bovine eyes. It was demonstrated that FN3K retained mobility upon intravitreal injection, although a certain delay in diffusion was observed. Alkylation of free cysteines was tolerated both in terms of enzymatic activity and vitreous diffusion. Ex vivo diffusion data gathered and the availability of yeast-produced high purity enzyme now clear the path for in vivo pharmacokinetics studies of FN3K.


Subject(s)
Diabetes Mellitus , Saccharomyces cerevisiae , Animals , Cattle , Humans , Intravitreal Injections , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Spectrometry, Fluorescence
6.
Org Biomol Chem ; 20(2): 464-471, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34913461

ABSTRACT

Recently, the GlyConnect-oxime (GC) protein conjugation strategy was developed to provide a site-selective glycan-based conjugation strategy as an extension to the in-house developed GlycoDelete (GD) technology. GD gives access to glycoproteins with single GlcNAc, LacNAc, or LacNAc-Sia type glycans on their N-glycosylation sites. We have previously shown that these glycans provide a unique handle for site-selective conjugation as they provide a short, homogeneous and hydrophilic link to the protein backbone. GC focused on the use of chemical and chemo-enzymatic pathways for conjugation of a single molecule of interest via oxime formation or reductive amination. In the current work, we explore multicomponent reactions (MCR), namely Ugi and Passerini reactions, for GlycoDelete glycan directed, site-specific protein conjugation (MC-GC). The use of the Ugi and Passerini multicomponent reactions holds the potential of introducing multiple groups of interest in a single reaction step while creating a hydrophilic peptide-like linker.

7.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34609205

ABSTRACT

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Models, Animal , SARS-CoV-2
8.
Biotechnol Bioeng ; 117(8): 2479-2488, 2020 08.
Article in English | MEDLINE | ID: mdl-32374435

ABSTRACT

The glycosylation pathways of several eukaryotic protein expression hosts are being engineered to enable the production of therapeutic glycoproteins with humanized application-customized glycan structures. In several expression hosts, this has been quite successful, but one caveat is that the new N-glycan structures inadvertently might be substrates for one or more of the multitude of endogenous glycosyltransferases in such heterologous background. This then results in the formation of novel, undesired glycan structures, which often remain insufficiently characterized. When expressing mouse interleukin-22 in a Pichia pastoris (syn. Komagataella phaffii) GlycoSwitchM5 strain, which had been optimized to produce Man5 GlcNAc2 N-glycans, glycan profiling revealed two major species: Man5 GlcNAc2 and an unexpected, partially α-mannosidase-resistant structure. A detailed structural analysis using exoglycosidase sequencing, mass spectrometry, linkage analysis, and nuclear magnetic resonance revealed that this novel glycan was Man5 GlcNAc2 modified with a Glcα-1,2-Manß-1,2-Manß-1,3-Glcα-1,3-R tetrasaccharide. Expression of a Golgi-targeted GlcNAc transferase-I strongly inhibited the formation of this novel modification, resulting in more homogeneous modification with the targeted GlcNAcMan5 GlcNAc2 structure. Our findings reinforce accumulating evidence that robustly customizing the N-glycosylation pathway in P. pastoris to produce particular human-type structures is still an incompletely solved synthetic biology challenge, which will require further innovation to enable safe glycoprotein pharmaceutical production.


Subject(s)
Glycoproteins , Polysaccharides , Protein Engineering/methods , Saccharomycetales , Synthetic Biology/methods , Animals , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosylation , Humans , Mice , Polysaccharides/chemistry , Polysaccharides/genetics , Polysaccharides/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism
9.
Environ Microbiol ; 19(10): 3930-3937, 2017 10.
Article in English | MEDLINE | ID: mdl-28488744

ABSTRACT

Several bacterial species produce membrane vesicles (MVs) in response to antibiotic stress. However, the biogenesis and role of MVs in bacterial antibiotic resistance mechanisms have remained unclear. Here, we studied the effect of the fluoroquinolone ciprofloxacin on MV secretion by Stenotrophomonas maltophilia using a combination of electron microscopy and proteomic approaches. We found that in addition to the classical outer membrane vesicles (OMV), ciprofloxacin-stimulated cultures produced larger vesicles containing both outer and inner membranes termed outer-inner membrane vesicles (OIMV), and that such MVs are enriched with cytosolic proteins. Remarkably, OIMV were found to be decorated with filamentous structures identified as fimbriae. In addition, ciprofloxacin stress leads to the release of bacteriophages and phage tail-like particles. Prophage induction by ciprofloxacin has been linked to pathogenesis and horizontal gene transfer in several bacterial species. Together, our findings show that ciprofloxacin treatment of S. maltophilia leads to the secretion of a heterogeneous pool of MVs and the induction of prophages that are potentially involved in adverse side-effects during antibiotic treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Prophages/physiology , Secretory Vesicles/drug effects , Stenotrophomonas maltophilia/drug effects , Virus Activation/drug effects , Drug Resistance, Bacterial/drug effects , Fluoroquinolones/metabolism , Microbial Sensitivity Tests , Prophages/genetics , Proteomics , Secretory Vesicles/ultrastructure , Stenotrophomonas maltophilia/ultrastructure , Stenotrophomonas maltophilia/virology
10.
Front Microbiol ; 7: 1336, 2016.
Article in English | MEDLINE | ID: mdl-27625638

ABSTRACT

Cystic fibrosis (CF) is the most common lethal inherited disorder in Caucasians. It is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. A defect in the CFTR ion channel causes a dramatic change in the composition of the airway surface fluid, leading to a highly viscous mucus layer. In healthy individuals, the majority of bacteria trapped in the mucus layer are removed and destroyed by mucociliary clearance. However, in the lungs of patients with CF, the mucociliary clearance is impaired due to dehydration of the airway surface fluid. As a consequence, patients with CF are highly susceptible to chronic or intermittent pulmonary infections, often causing extensive lung inflammation and damage, accompanied by a decreased life expectancy. This mini review will focus on the different secretion mechanisms used by the major bacterial CF pathogens to release virulence factors, their role in resistance and discusses the potential for therapeutically targeting secretion systems.

11.
Antimicrob Agents Chemother ; 60(4): 2516-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26787686

ABSTRACT

The treatment ofStenotrophomonas maltophiliainfection with ß-lactam antibiotics leads to increased release of outer membrane vesicles (OMVs), which are packed with two chromosomally encoded ß-lactamases. Here, we show that these ß-lactamase-packed OMVs are capable of establishing extracellular ß-lactam degradation. We also show that they dramatically increase the apparent MICs of imipenem and ticarcillin for the cohabituating speciesPseudomonas aeruginosaandBurkholderia cenocepacia.


Subject(s)
Burkholderia cenocepacia/genetics , Extracellular Vesicles/enzymology , Pseudomonas aeruginosa/genetics , Stenotrophomonas maltophilia/genetics , beta-Lactam Resistance/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Burkholderia cenocepacia/drug effects , Burkholderia cenocepacia/enzymology , Cell Membrane/chemistry , Conjugation, Genetic , Extracellular Vesicles/chemistry , Gene Expression , Gene Transfer, Horizontal , Hydrolysis , Imipenem/pharmacology , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Stenotrophomonas maltophilia/drug effects , Stenotrophomonas maltophilia/enzymology , Ticarcillin/pharmacology , beta-Lactamases/genetics
12.
Front Microbiol ; 6: 298, 2015.
Article in English | MEDLINE | ID: mdl-25926824

ABSTRACT

Outer membrane vesicles (OMVs) are small nanoscale structures that are secreted by bacteria and that can carry nucleic acids, proteins, and small metabolites. They can mediate intracellular communication and play a role in virulence. In this study, we show that treatment with the ß-lactam antibiotic imipenem leads to a dramatic increase in the secretion of outer membrane vesicles in the nosocomial pathogen Stenotrophomonas maltophilia. Proteomic analysis of their protein content demonstrated that the OMVs contain the chromosomal encoded L1 metallo-ß-lactamase and L2 serine-ß-lactamase. Moreover, the secreted OMVs contain large amounts of two Ax21 homologs, i.e., outer membrane proteins known to be involved in virulence and biofilm formation. We show that OMV secretion and the levels of Ax21 in the OMVs are dependent on the quorum sensing diffusible signal system (DSF). More specific, we demonstrate that the S. maltophilia DSF cis-Δ2-11-methyl-dodecenoic acid and, to a lesser extent, the Burkholderia cenocepacia DSF cis-Δ2-dodecenoic acid, stimulate OMV secretion. By a targeted proteomic analysis, we confirmed that DSF-induced OMVs contain large amounts of the Ax21 homologs, but not the ß-lactamases. This work illustrates that both quorum sensing and disturbance of the peptidoglycan biosynthesis provoke the release of OMVs and that OMV content is context dependent.

13.
Nat Biotechnol ; 32(5): 485-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24752077

ABSTRACT

Heterogeneity in the N-glycans on therapeutic proteins causes difficulties for protein purification and process reproducibility and can lead to variable therapeutic efficacy. This heterogeneity arises from the multistep process of mammalian complex-type N-glycan synthesis. Here we report a glycoengineering strategy--which we call GlycoDelete--that shortens the Golgi N-glycosylation pathway in mammalian cells. This shortening results in the expression of proteins with small, sialylated trisaccharide N-glycans and reduced complexity compared to native mammalian cell glycoproteins. GlycoDelete engineering does not interfere with the functioning of N-glycans in protein folding, and the physiology of cells modified by GlycoDelete is similar to that of wild-type cells. A therapeutic human IgG expressed in GlycoDelete cells had properties, such as reduced initial clearance, that might be beneficial when the therapeutic goal is antigen neutralization. This strategy for reducing N-glycan heterogeneity on mammalian proteins could lead to more consistent performance of therapeutic proteins and modulation of biopharmaceutical functions.


Subject(s)
Polysaccharides/genetics , Protein Engineering/methods , Recombinant Proteins/genetics , Animals , Glycosylation , Humans , Mice , Polysaccharides/chemistry , Polysaccharides/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...