Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(9): eabq2044, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36857460

ABSTRACT

An intensely debated topic is whether political polarization on social media is on the rise. We can investigate this question only if we can quantify polarization, by taking into account how extreme the opinions of the people are, how much they organize into echo chambers, and how these echo chambers organize in the network. Current polarization estimates are insensitive to at least one of these factors: They cannot conclusively clarify the opening question. Here, we propose a measure of ideological polarization that can capture the factors we listed. The measure is based on the generalized Euclidean distance, which estimates the distance between two vectors on a network, e.g., representing people's opinion. This measure can fill the methodological gap left by the state of the art and leads to useful insights when applied to real-world debates happening on social media and to data from the U.S. Congress.

2.
Phys Rev E ; 106(3-1): 034312, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36266872

ABSTRACT

Centrality measures quantify the importance of a node in a network based on different geometric or diffusive properties, and focus on different scales. Here, we adopt a geometrical viewpoint to define a multiscale centrality in networks. Given a metric distance between the nodes, we measure the centrality of a node by its tendency to be close to geodesics between nodes in its neighborhood, via the concept of triangle inequality excess. Depending on the size of the neighborhood, the resulting Gromov centrality defines the importance of a node at different scales in the graph, and it recovers as limits well-known concepts such as the clustering coefficient and closeness centrality. We argue that Gromov centrality is affected by the geometric and boundary constraints of the network, and illustrate how it can help distinguish different types of nodes in random geometric graphs and empirical transportation networks.

3.
Chaos ; 31(6): 063115, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34241312

ABSTRACT

Infectious diseases typically spread over a contact network with millions of individuals, whose sheer size is a tremendous challenge to analyzing and controlling an epidemic outbreak. For some contact networks, it is possible to group individuals into clusters. A high-level description of the epidemic between a few clusters is considerably simpler than on an individual level. However, to cluster individuals, most studies rely on equitable partitions, a rather restrictive structural property of the contact network. In this work, we focus on Susceptible-Infected-Susceptible (SIS) epidemics, and our contribution is threefold. First, we propose a geometric approach to specify all networks for which an epidemic outbreak simplifies to the interaction of only a few clusters. Second, for the complete graph and any initial viral state vectors, we derive the closed-form solution of the nonlinear differential equations of the N-intertwined mean-field approximation of the SIS process. Third, by relaxing the notion of equitable partitions, we derive low-complexity approximations and bounds for epidemics on arbitrary contact networks. Our results are an important step toward understanding and controlling epidemics on large networks.


Subject(s)
Communicable Diseases , Epidemics , Cluster Analysis , Communicable Diseases/epidemiology , Disease Susceptibility/epidemiology , Humans , Models, Biological , Models, Theoretical
4.
Appl Netw Sci ; 3(1): 34, 2018.
Article in English | MEDLINE | ID: mdl-30839759

ABSTRACT

Due to the open data policies, nowadays, some countries have their power grid data available online. This may bring a new concern to the power grid operators in terms of malicious threats. In this paper, we assess the vulnerability of power grids to targeted attacks based on network science. By employing two graph models for power grids as simple and weighted graphs, we first calculate the centrality metrics of each node in a power grid. Subsequently, we formulate different node-attack strategies based on those centrality metrics, and empirically analyse the impact of targeted attacks on the structural and the operational performance of power grids. We demonstrate our methodology in the high-voltage transmission networks of 5 European countries and in commonly used IEEE test power grids.

SELECTION OF CITATIONS
SEARCH DETAIL
...