Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 20606, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34663895

ABSTRACT

InGaN/GaN quantum wells (QWs) with sub-nanometer thickness can be employed in short-period superlattices for bandgap engineering of efficient optoelectronic devices, as well as for exploiting topological insulator behavior in III-nitride semiconductors. However, it had been argued that the highest indium content in such ultra-thin QWs is kinetically limited to a maximum of 33%, narrowing down the potential range of applications. Here, it is demonstrated that quasi two-dimensional (quasi-2D) QWs with thickness of one atomic monolayer can be deposited with indium contents far exceeding this limit, under certain growth conditions. Multi-QW heterostructures were grown by plasma-assisted molecular beam epitaxy, and their composition and strain were determined with monolayer-scale spatial resolution using quantitative scanning transmission electron microscopy in combination with atomistic calculations. Key findings such as the self-limited QW thickness and the non-monotonic dependence of the QW composition on the growth temperature under metal-rich growth conditions suggest the existence of a substitutional synthesis mechanism, involving the exchange between indium and gallium atoms at surface sites. The highest indium content in this work approached 50%, in agreement with photoluminescence measurements, surpassing by far the previously regarded compositional limit. The proposed synthesis mechanism can guide growth efforts towards binary InN/GaN quasi-2D QWs.

2.
Appl Opt ; 42(22): 4560-5, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12916621

ABSTRACT

We study the power-limiting properties of photoanisotropic azobenzene films with low-power laser. The trans-cis photoisomerization and molecular reorientation of azobenzene molecules induced by polarized laser beams result in intensity-dependent anisotropic effects. Consequently, the transmittance of the input beam that passes through the film between two crossed polarizers becomes enhanced at low intensities and clamped at high intensities. The limiting threshold is adjustable by changing the intensity of excitation beam.

SELECTION OF CITATIONS
SEARCH DETAIL
...