Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Med Virol ; 95(3): e28614, 2023 03.
Article in English | MEDLINE | ID: mdl-36840403

ABSTRACT

Exosomes are small extracellular vesicles secreted by cells and have a major role in cell-to-cell signaling. As dengue infection progresses from a mild to a severe form of infection, the exosome's microRNA (miRNA) composition might change, which may contribute to pathogenesis. In this study, a comprehensive analysis of serum exosomal miRNAs was performed and their involvement in dengue virus-induced disease progression in an Indian cohort was assessed. Small RNA-seq showed 50 differentially expressed exosomal miRNAs that were significantly dysregulated during dengue infection. After extensive validation, miR-96-5p was found to be significantly upregulated, whereas miR-146a-5p was significantly downregulated with the progression of disease to severe form. Interestingly, a strong positive correlation was found between the expression levels of miR-96-5p and miR-146a-5p and the platelet levels of the patients. Further, study of miR-146a-5p showed that it regulates the expression of the proteins which are involved in the immune responses. These results suggest that miR-96-5p and miR-146a-5p could be used as diagnostic and prognostic markers for dengue disease progression, in addition to the already available biochemical and pathological parameters.


Subject(s)
Dengue , MicroRNAs , Virus Diseases , Humans , Dengue/genetics , Disease Progression , MicroRNAs/metabolism , Patient Acuity , Exosomes/genetics
2.
J Cell Sci ; 135(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35904007

ABSTRACT

Post-translational modifications (PTMs), such as SUMOylation, are known to modulate fundamental processes of a cell. Infectious agents such as Salmonella Typhimurium (STm), which causes gastroenteritis, utilize the PTM mechanism SUMOylation to hijack the host cell. STm suppresses host SUMO pathway genes UBC9 (also known as UBE2I) and PIAS1 to perturb SUMOylation for an efficient infection. In the present study, the regulation of SUMO pathway genes during STm infection was investigated. A direct binding of c-Fos (encoded by FOS), a component of activator protein-1 (AP-1), to promoters of both UBC9 and PIAS1 was observed. Experimental perturbation of c-Fos led to changes in the expression of both UBC9 and PIAS1. STm infection of fibroblasts with SUMOylation-deficient c-Fos (c-FOS-KOSUMO-def-FOS) resulted in uncontrolled activation of target genes, leading to massive immune activation. Infection of c-FOS-KOSUMO-def-FOS cells favored STm replication, indicating misdirected immune mechanisms. Finally, chromatin immunoprecipitation assays confirmed a context-dependent differential binding and release of AP-1 to and from target genes due to its phosphorylation and SUMOylation, respectively. Overall, our data point towards the existence of a bidirectional cross-talk between c-Fos and the SUMO pathway and highlight their importance in AP-1 function in STm infection and beyond. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Salmonella Infections , Transcription Factor AP-1 , Humans , Promoter Regions, Genetic , Salmonella Infections/genetics , Salmonella typhimurium/genetics , Sumoylation , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
3.
Front Pharmacol ; 13: 895254, 2022.
Article in English | MEDLINE | ID: mdl-35517798

ABSTRACT

Stringent balance of the immune system is a key regulatory factor in defining successful implantation, fetal development, and timely parturition. Interference in these primary regulatory mechanisms, either at adolescence or prenatal state led to adverse pregnancy outcomes. Fertility restoration with the help of injectable gonadotrophins/progesterone, ovulation-inducing drugs, immunomodulatory drugs (corticosteroids), and reproductive surgeries provides inadequate responses, which manifest its own side effects. The development of a potential diagnostic biomarker and an effectual treatment for adverse pregnancy outcomes is a prerequisite to maternal and child health. Parent cell originated bi-layered-intraluminal nano-vesicles (30-150 nm) also known as exosomes are detected in all types of bodily fluids like blood, saliva, breast milk, urine, etc. Exosomes being the most biological residual structures with the least cytotoxicity are loaded with cargo in the form of RNAs (miRNAs), proteins (cytokines), hormones (estrogen, progesterone, etc.), cDNAs, and metabolites making them chief molecules of cell-cell communication. Their keen involvement in the regulation of biological processes has portrayed them as the power shots of cues to understand the disease's pathophysiology and progression. Recent studies have demonstrated the role of immunexosomes (immunomodulating exosomes) in maintaining unwavering immune homeostasis between the mother and developing fetus for a healthy pregnancy. Moreover, the concentration and size of the exosomes are extensively studied in adverse pregnancies like preeclampsia, gestational diabetes mellitus (GDM), and preterm premature rupture of membrane (pPROMs) as an early diagnostic marker, thus giving in-depth information about their pathophysiology. Exosomes have also been engineered physically as well as genetically to enhance their encapsulation efficiency and specificity in therapy for cancer and adverse pregnancies. Successful bench to bedside discoveries and interventions in cancer has motivated developmental biologists to investigate the role of immunexosomes and their active components. Our review summarizes the pre-clinical studies for the use of these power-shots as therapeutic agents. We envisage that these studies will pave the path for the use of immunexosomes in clinical settings for reproductive problems that arise due to immune perturbance in homeostasis either at adolescence or prenatal state.

SELECTION OF CITATIONS
SEARCH DETAIL
...