Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
iScience ; 27(2): 108927, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38327776

ABSTRACT

Obesity and its co-morbidities including type 2 diabetes are increasing at epidemic rates in the U.S. and worldwide. Brown adipose tissue (BAT) is a potential therapeutic to combat obesity and type 2 diabetes. Increasing BAT mass by transplantation improves metabolic health in rodents, but its clinical translation remains a challenge. Here, we investigated if transplantation of 2-4 million differentiated brown pre-adipocytes from mouse BAT stromal fraction (SVF) or human pluripotent stem cells (hPSCs) could improve metabolic health. Transplantation of differentiated brown pre-adipocytes, termed "committed pre-adipocytes" from BAT SVF from mice or derived from hPSCs improves glucose homeostasis and insulin sensitivity in recipient mice under conditions of diet-induced obesity, and this improvement is mediated through the collaborative actions of the liver transcriptome, tissue AKT signaling, and FGF21. These data demonstrate that transplantation of a small number of brown adipocytes has significant long-term translational and therapeutic potential to improve glucose metabolism.

2.
Curr Opin Genet Dev ; 81: 102085, 2023 08.
Article in English | MEDLINE | ID: mdl-37421902

ABSTRACT

Adipose tissue in its different forms: white, brown, and beige, while essential in day-to-day bodily functions, leads to several disorders when present in overabundance, including obesity and type-2 diabetes. Adipose tissue function/dysfunction is largely mediated by the diversity of its cell composition, within adipocytes and cells in its stromal fraction. Owing to its heterogeneous nature, recent studies have focused on intercalating the effects of cellular diversity with adipose tissue function, particularly by employing sequencing technologies. In this review, we highlight the recent advances in utilizing single-cell and single-nuclei RNA sequencing technologies to discover novel adipose tissue cell types or subtypes, and to determine their role in mediating tissue, as well as whole-body metabolism and function.


Subject(s)
Adipose Tissue , Diabetes Mellitus, Type 2 , Humans , Obesity/metabolism , Energy Metabolism
3.
Nat Commun ; 13(1): 5606, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153324

ABSTRACT

Decreased adipose tissue regulatory T cells contribute to insulin resistance in obese mice, however, little is known about the mechanisms regulating adipose tissue regulatory T cells numbers in humans. Here we obtain adipose tissue from obese and lean volunteers. Regulatory T cell abundance is lower in obese vs. lean visceral and subcutaneous adipose tissue and associates with reduced insulin sensitivity and altered adipocyte metabolic gene expression. Regulatory T cells numbers decline following high-fat diet induction in lean volunteers. We see alteration in major histocompatibility complex II pathway in adipocytes from obese patients and after high fat ingestion, which increases T helper 1 cell numbers and decreases regulatory T cell differentiation. We also observe increased expression of inhibitory co-receptors including programmed cell death protein 1 and OX40 in visceral adipose tissue regulatory T cells from patients with obesity. In human obesity, these global effects of interferon gamma to reduce regulatory T cells and diminish their function appear to instigate adipose inflammation and suppress adipocyte metabolism, leading to insulin resistance.


Subject(s)
Insulin Resistance , Adipose Tissue/metabolism , Animals , Humans , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/metabolism
4.
Int J Obes (Lond) ; 45(4): 795-807, 2021 04.
Article in English | MEDLINE | ID: mdl-33500550

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is the most common sustained arrhythmia, with growing evidence identifying obesity as an important risk factor for the development of AF. Although defective atrial myocyte excitability due to stress-induced remodeling of ion channels is commonly observed in the setting of AF, little is known about the mechanistic link between obesity and AF. Recent studies have identified increased cardiac late sodium current (INa,L) downstream of calmodulin-dependent kinase II (CaMKII) activation as an important driver of AF susceptibility. METHODS: Here, we investigated a possible role for CaMKII-dependent INa,L in obesity-induced AF using wild-type (WT) and whole-body knock-in mice that ablates phosphorylation of the Nav1.5 sodium channel and prevents augmentation of the late sodium current (S571A; SA mice). RESULTS: A high-fat diet (HFD) increased susceptibility to arrhythmias in WT mice, while SA mice were protected from this effect. Unexpectedly, SA mice had improved glucose homeostasis and decreased body weight compared to WT mice. However, SA mice also had reduced food consumption compared to WT mice. Controlling for food consumption through pair feeding of WT and SA mice abrogated differences in weight gain and AF inducibility, but not atrial fibrosis, premature atrial contractions or metabolic capacity. CONCLUSIONS: These data demonstrate a novel role for CaMKII-dependent regulation of Nav1.5 in mediating susceptibility to arrhythmias and whole-body metabolism under conditions of diet-induced obesity.


Subject(s)
Atrial Fibrillation/prevention & control , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Obesity/physiopathology , Animals , Diet, High-Fat/adverse effects , Gene Knock-In Techniques , Glucose/metabolism , Homeostasis , Male , Mexiletine/pharmacology , Mice , Mice, Inbred C57BL , NAV1.5 Voltage-Gated Sodium Channel/genetics , Phosphorylation
5.
Circulation ; 143(2): 145-159, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33106031

ABSTRACT

BACKGROUND: Brown adipose tissue (BAT) is an important tissue for thermogenesis, making it a potential target to decrease the risks of obesity, type 2 diabetes, and cardiovascular disease, and recent studies have also identified BAT as an endocrine organ. Although BAT has been implicated to be protective in cardiovascular disease, to this point there are no studies that identify a direct role for BAT to mediate cardiac function. METHODS: To determine the role of BAT on cardiac function, we utilized a model of BAT transplantation. We then performed lipidomics and identified an increase in the lipokine 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME). We utilized a mouse model with sustained overexpression of 12,13-diHOME and investigated the role of 12,13-diHOME in a nitric oxide synthase type 1 deficient (NOS1-/-) mouse and in isolated cardiomyocytes to determine effects on function and respiration. We also investigated 12,13-diHOME in a cohort of human patients with heart disease. RESULTS: Here, we determined that transplantation of BAT (+BAT) improves cardiac function via the release of the lipokine 12,13-diHOME. Sustained overexpression of 12,13-diHOME using tissue nanotransfection negated the deleterious effects of a high-fat diet on cardiac function and remodeling, and acute injection of 12,13-diHOME increased cardiac hemodynamics via direct effects on the cardiomyocyte. Furthermore, incubation of cardiomyocytes with 12,13-diHOME increased mitochondrial respiration. The effects of 12,13-diHOME were absent in NOS1-/- mice and cardiomyocytes. We also provide the first evidence that 12,13-diHOME is decreased in human patients with heart disease. CONCLUSIONS: Our results identify an endocrine role for BAT to enhance cardiac function that is mediated by regulation of calcium cycling via 12,13-diHOME and NOS1.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/transplantation , Heart Failure/metabolism , Heart Failure/therapy , Lipidomics/methods , Oleic Acids/metabolism , Aged , Animals , Cells, Cultured , Cohort Studies , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Oleic Acids/administration & dosage , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology
6.
Mol Aspects Med ; 68: 74-81, 2019 08.
Article in English | MEDLINE | ID: mdl-31228478

ABSTRACT

Obesity is a disease that results from an imbalance between energy intake and energy expenditure. Brown adipose tissue (BAT) is a potential therapeutic target to improve the comorbidities associated with obesity due to its inherent thermogenic capacity and its ability to improve glucose metabolism. Multiple studies have shown that activation of BAT using either pharmacological treatments or cold exposure had an acute effect to increase metabolic function and reduce adiposity. Recent preclinical investigations have explored whether increasing BAT mass or activation through transplantation models could improve glucose metabolism and metabolic health. Successful BAT transplantation models have shown improvements in glucose metabolism and insulin sensitivity, as well as reductions in body mass and decreased adiposity in recipients. BAT transplantation may confer its beneficial effects through several different mechanisms, including endocrine effects via the release of 'batokines'. More recent studies have demonstrated that beige and brown adipocytes isolated from human progenitor cells and transplanted into mouse models result in metabolic improvements similar to transplantation of whole BAT; this could represent a clinically translatable model. In this review we will discuss the impetus for both early and recent investigations utilizing BAT transplantation models, the outcomes of these studies, and review the mechanisms associated with the beneficial effects of BAT transplant to confer improvements in metabolic health.


Subject(s)
Adipose Tissue, Brown/transplantation , Animals , Diabetes Mellitus, Type 1/therapy , Disease Models, Animal , Glucose/metabolism , Humans , Insulin Resistance , Translational Research, Biomedical
7.
iScience ; 11: 425-439, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30661000

ABSTRACT

Exercise affects whole-body metabolism through adaptations to various tissues, including adipose tissue (AT). Recent studies investigated exercise-induced adaptations to AT, focusing on inguinal white adipose tissue (WAT), perigonadal WAT, and interscapular brown adipose tissue (iBAT). Although these AT depots play important roles in metabolism, they account for only ∼50% of the AT mass in a mouse. Here, we investigated the effects of 3 weeks of exercise training on all 14 AT depots. Exercise induced depot-specific effects in genes involved in mitochondrial activity, glucose metabolism, and fatty acid uptake and oxidation in each adipose tissue (AT) depot. These data demonstrate that exercise training results in unique responses in each AT depot; identifying the depot-specific adaptations to AT in response to exercise is essential to determine how AT contributes to the overall beneficial effect of exercise.

8.
Article in English | MEDLINE | ID: mdl-29684558

ABSTRACT

Physical exercise leads to beneficial effects in numerous tissues and organ systems and offers protection against obesity and type 2 diabetes. Recent studies have investigated the role of exercise on brown adipose tissue (BAT) and white adipose tissue (WAT), and have indicated marked adaptations to each tissue with exercise. Studies investigating the effects of exercise on BAT have produced conflicting results, with some showing an increase in the thermogenic activity of BAT and some demonstrating a decrease in the thermogenic activity of BAT. Human studies have observed a down-regulation of BAT activity (measured by a reduction in glucose uptake) in response to exercise. In WAT, exercise decreases adipocyte size, alters gene expression, and increases mitochondrial activity. Transplantation of exercise-trained subcutaneous WAT (scWAT) improves whole-body metabolic health. In rodents, exercise also results in a beiging of scWAT. Thus, exercise-induced changes to adipose tissue may be part of the mechanism by which exercise improves metabolic health.


Subject(s)
Adipocytes, Beige/physiology , Adipocytes, Brown/physiology , Exercise/physiology , Adipocytes, White/physiology , Adipose Tissue, Brown/physiology , Animals , Humans , Mitochondria/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...