Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
In Vivo ; 26(6): 889-97, 2012.
Article in English | MEDLINE | ID: mdl-23160669

ABSTRACT

BACKGROUND/AIM: Use of zebrafish models may decrease the cost of screening new irradiation protectors and mitigators. MATERIALS AND METHODS: Zebrafish (Danio rerio) models were tested for screening water-soluble radiation protectors and mitigators. Irradiation of embryos and monitoring survival, and measuring fibrosis of the caudal musculature of adults allowed for testing of acute and late effects, respectively. RESULTS: Incubation of zebrafish embryos either before or after irradiation in ethyl pyruvate (1 mM) increased survival. Irradiation of adults to 15 to 75 Gy, delivered in single-fraction at 13 Gy/min, showed dose-dependent fibrosis at 30 days, quantitated as physiological decrease in swimming tail movement, and histopathological detection of collagen deposition in the dorsal musculature. Continuous administration of small-molecule radioprotector drugs in the water after irradiation reduced both acute and chronic injuries. CONCLUSION: The zebrafish is cost-effective for screening new radiation countermeasures.


Subject(s)
Embryonic Development/radiation effects , Fibrosis , Radiation, Ionizing , Radiation-Protective Agents , Amifostine/pharmacology , Animals , Antioxidants/pharmacology , Cyclic N-Oxides/pharmacology , Dose-Response Relationship, Radiation , Fibrosis/physiopathology , Fibrosis/therapy , Humans , Organometallic Compounds/pharmacology , Salicylates/pharmacology , Spin Labels , Survival Analysis , Zebrafish/embryology , Zebrafish/physiology
2.
J Neurosurg ; 113 Suppl: 236-41, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21121807

ABSTRACT

OBJECT: Cone beam CT (CBCT) image guidance has recently been adopted for the delivery of spine radiosurgery. In 2007, the authors' institution began a dedicated spine radiosurgery program using the Elekta Synergy S system, which incorporates CBCT technology. In this study, the authors prospectively evaluated the Synergy S platform as a dedicated spine radiosurgery delivery system, including an evaluation of the accuracy of patient positioning using this technology, as part of a quality assurance program. METHODS: One hundred sixty-six spine and paraspinal lesions were treated using the Elekta Synergy S 6-MV LINAC with a beam modulator and CBCT image guidance combined with a HexaPOD couch that allows correction of patient positioning in 3 translational and 3 rotational directions. Stratifying the lesion by location, there were 28 cervical, 69 thoracic, 48 lumbar, and 21 sacral lesions. The most common histological types for the metastatic lesions (136 cases total) were breast, lung, sarcomas, and renal cells. The most common benign tumors (30 cases total) included 10 schwannomas, 5 neurofibromas, and 5 meningiomas. Twenty-eight lesions (17%) were intradural. To measure intratreatment patient movement, 3 quality assurance CBCTs were performed and recorded at separate times: immediately before treatment started; at the first third of the procedure; and at the second third of the procedure. The positioning data and fused images of the planning CT and CBCT were analyzed to determine intrafraction patient movements. From each of 3 quality assurance CBCT images, 3 translational and 3 rotational coordinates were obtained. RESULTS: The prescribed dose to the gross tumor volume, delivered in a single fraction, ranged from 12 to 20 Gy (mean 16 Gy) in this cohort. This dose was delivered by between 7 and 14 coplanar intensity-modulated radiation therapy beams (mean 9 beams). The gross tumor volumes ranged from 1.2 to 491.7 cm(3) (mean 39.2 cm(3)). Mean treatment time including setup was 64 minutes. At the first third of the treatment, the magnitude of the 3D translational vector (X, Y, Z) was 1.1 ± 0.7 mm. Similarly, the 3D translational vector at the second third of the treatment was 1.0 ± 0.6 mm. The means ± SDs of the rotational angles were 0.2° ± 0.4°, 0.4° ± 0.5°, and 0.3° ± 0.5° along yaw, roll, and pitch, respectively, at the first third of the treatment, and 0.2° ± 0.3°, 0.4° ± 0.5°, and 0.4° ± 0.5°, respectively, at the second third of the treatment. CONCLUSIONS: Single-fraction spine radiosurgery performed using the Synergy S platform and incorporating CBCT image guidance was determined to be feasible, accurate, and safe. This technique provides an overall translational position accuracy of < 2.0 mm.


Subject(s)
Radiosurgery/instrumentation , Spinal Neoplasms/surgery , Spine/surgery , Adult , Aged , Aged, 80 and over , Cone-Beam Computed Tomography , Female , Humans , Male , Middle Aged , Patient Positioning , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/instrumentation , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...