Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35161911

ABSTRACT

Measurements of the turbulent kinetic energy dissipation rate (ε) were conducted by a free-fall microstructure profiler in the western Pacific North Equatorial Current (WPNEC) during a continuous period of 25 h, from the sea surface to about 160 m depth. In the mixed layer (ML), ε values were typically on the order of 10-8∼10-7 W kg-1, and an obvious diurnal cycle existed in the upper 40 m of the surface mixing layer. Below the ML, ε was reduced to 10-9∼10-8 W kg-1 with some patches of high ε reaching 10-7.5 W kg-1. The barrier layer was identified in the nighttime with a maximum thickness of 20 m, and it was eroded by the advection of freshwater within the lower part of the isothermal layers associated with an anticyclonic eddy in the afternoon. A simple scaling relevant to shear (S2) instability and stratification (N2) that can predict turbulent dissipation rates in the transition layer, between the well-mixed layer and the thermocline below, was obtained through the scaling ε∼S-0.40N0.20. Besides turbulence, double-diffusive processes also contributed to the vertical mixing levels in the upper WPNEC.

2.
Mar Policy ; 131: 1-18, 2021 Sep.
Article in English | MEDLINE | ID: mdl-37850151

ABSTRACT

Although great progress has been made to advance the scientific understanding of oil spills, tools for integrated assessment modeling of the long-term impacts on ecosystems, socioeconomics and human health are lacking. The objective of this study was to develop a conceptual framework that could be used to answer stakeholder questions about oil spill impacts and to identify knowledge gaps and future integration priorities. The framework was initially separated into four knowledge domains (ocean environment, biological ecosystems, socioeconomics, and human health) whose interactions were explored by gathering stakeholder questions through public engagement, assimilating expert input about existing models, and consolidating information through a system dynamics approach. This synthesis resulted in a causal loop diagram from which the interconnectivity of the system could be visualized. Results of this analysis indicate that the system naturally separates into two tiers, ocean environment and biological ecosystems versus socioeconomics and human health. As a result, ocean environment and ecosystem models could be used to provide input to explore human health and socioeconomic variables in hypothetical scenarios. At decadal-plus time scales, the analysis emphasized that human domains influence the natural domains through changes in oil-spill related laws and regulations. Although data gaps were identified in all four model domains, the socioeconomics and human health domains are the least established. Considerable future work is needed to address research gaps and to create fully coupled quantitative integrative assessment models that can be used in strategic decision-making that will optimize recoveries from future large oil spills.

3.
Nature ; 460(7255): 581-2, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19641582
SELECTION OF CITATIONS
SEARCH DETAIL
...