Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Brain ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842726

ABSTRACT

4-repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R-tauopathies are progressive-supranuclear-palsy (PSP) and corticobasal-degeneration (CBD) characterized by subcortical tau accumulation and cortical neuronal dysfunction, as shown by PET-assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction, and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces remote neuronal dysfunction in functionally connected cortical regions to test a pathophysiological model that mechanistically links subcortical tau accumulation to cortical neuronal dysfunction in 4R tauopathies. We included 51 Aß-negative patients with clinically diagnosed PSP variants (n=26) or Corticobasal Syndrome (CBS; n=25) who underwent structural MRI and 18F-PI-2620 tau-PET. 18F-PI-2620 tau-PET was recorded using a dynamic one-stop-shop acquisition protocol, to determine an early 0.5-2.5 min post-tracer-injection perfusion window for assessing cortical neuronal dysfunction, as well as a 20-40 min post-tracer-injection window to determine 4R-tau load. Perfusion-PET (i.e. early-window) was assessed in 200 cortical regions, and tau-PET was assessed in 32 subcortical regions of established functional brain atlasses. We determined tau epicenters as subcortical regions with highest 18F-PI-2620 tau-PET signal and assessed the connectivity of tau epicenters to cortical ROIs using a resting-state fMRI-based functional connectivity template derived from 69 healthy elderly controls from the ADNI cohort. Using linear regression, we assessed whether i) higher subcortical tau-PET was associated with reduced cortical perfusion and ii) whether cortical perfusion reductions were observed preferentially in regions closely connected to subcortical tau epicenters. As hypothesized, higher subcortical tau-PET was associated with overall lower cortical perfusion, which remained consistent when controlling for cortical tau-PET. Using group-average and subject-level PET data, we found that the seed-based connectivity pattern of subcortical tau epicenters aligned with cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicenter showed lower perfusion. Together, subcortical tau-accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions in 4R-tauopathies. This suggests that subcortical tau pathology may induce cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.

2.
Int J Stroke ; : 17474930241252530, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38651756

ABSTRACT

BACKGROUND: Post-stroke cognitive impairment (PSCI) occurs in up to 50% of stroke survivors. Presence of pre-existing vascular brain injury, in particular the extent of white matter hyperintensities (WMH), is associated with worse cognitive outcome after stroke, but the role of WMH location in this association is unclear. AIMS: We determined if WMH in strategic white matter tracts explain cognitive performance after stroke. METHODS: Individual patient data from nine ischemic stroke cohorts with magnetic resonance imaging (MRI) were harmonized through the Meta VCI Map consortium. The association between WMH volumes in strategic tracts and domain-specific cognitive functioning (attention and executive functioning, information processing speed, language and verbal memory) was assessed using linear mixed models and lasso regression. We used a hypothesis-driven design, primarily addressing four white matter tracts known to be strategic in memory clinic patients: the left and right anterior thalamic radiation, forceps major, and left inferior fronto-occipital fasciculus. RESULTS: The total study sample consisted of 1568 patients (39.9% female, mean age = 67.3 years). Total WMH volume was strongly related to cognitive performance on all four cognitive domains. WMH volume in the left anterior thalamic radiation was significantly associated with cognitive performance on attention and executive functioning and information processing speed and WMH volume in the forceps major with information processing speed. The multivariable lasso regression showed that these associations were independent of age, sex, education, and total infarct volume and had larger coefficients than total WMH volume. CONCLUSION: These results show tract-specific relations between WMH volume and cognitive performance after ischemic stroke, independent of total WMH volume. This implies that the concept of strategic lesions in PSCI extends beyond acute infarcts and also involves pre-existing WMH. DATA ACCESS STATEMENT: The Meta VCI Map consortium is dedicated to data sharing, following our guidelines.

3.
medRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38586023

ABSTRACT

Introduction: White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment and are a key imaging marker in evaluating cognitive health. However, WMH volume alone does not fully account for the extent of cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. We propose that lesion network mapping (LNM), enables to infer if brain networks are connected to lesions, and could be a promising technique for enhancing our understanding of the role of WMH in cognitive disorders. Our study employed this approach to test the following hypotheses: (1) LNM-informed markers surpass WMH volumes in predicting cognitive performance, and (2) WMH contributing to cognitive impairment map to specific brain networks. Methods & results: We analyzed cross-sectional data of 3,485 patients from 10 memory clinic cohorts within the Meta VCI Map Consortium, using harmonized test results in 4 cognitive domains and WMH segmentations. WMH segmentations were registered to a standard space and mapped onto existing normative structural and functional brain connectome data. We employed LNM to quantify WMH connectivity across 480 atlas-based gray and white matter regions of interest (ROI), resulting in ROI-level structural and functional LNM scores. The capacity of total and regional WMH volumes and LNM scores in predicting cognitive function was compared using ridge regression models in a nested cross-validation. LNM scores predicted performance in three cognitive domains (attention and executive function, information processing speed, and verbal memory) significantly better than WMH volumes. LNM scores did not improve prediction for language functions. ROI-level analysis revealed that higher LNM scores, representing greater disruptive effects of WMH on regional connectivity, in gray and white matter regions of the dorsal and ventral attention networks were associated with lower cognitive performance. Conclusion: Measures of WMH-related brain network connectivity significantly improve the prediction of current cognitive performance in memory clinic patients compared to WMH volume as a traditional imaging marker of cerebrovascular disease. This highlights the crucial role of network effects, particularly in attentionrelated brain regions, improving our understanding of vascular contributions to cognitive impairment. Moving forward, refining WMH information with connectivity data could contribute to patient-tailored therapeutic interventions and facilitate the identification of subgroups at risk of cognitive disorders.

4.
Alzheimers Dement ; 20(4): 2980-2989, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38477469

ABSTRACT

INTRODUCTION: White matter hyperintensities (WMH) are associated with key dementia etiologies, in particular arteriolosclerosis and amyloid pathology. We aimed to identify WMH locations associated with vascular risk or cerebral amyloid-ß1-42 (Aß42)-positive status. METHODS: Individual patient data (n = 3,132; mean age 71.5 ± 9 years; 49.3% female) from 11 memory clinic cohorts were harmonized. WMH volumes in 28 regions were related to a vascular risk compound score (VRCS) and Aß42 status (based on cerebrospinal fluid or amyloid positron emission tomography), correcting for age, sex, study site, and total WMH volume. RESULTS: VRCS was associated with WMH in anterior/superior corona radiata (B = 0.034/0.038, p < 0.001), external capsule (B = 0.052, p < 0.001), and middle cerebellar peduncle (B = 0.067, p < 0.001), and Aß42-positive status with WMH in posterior thalamic radiation (B = 0.097, p < 0.001) and splenium (B = 0.103, p < 0.001). DISCUSSION: Vascular risk factors and Aß42 pathology have distinct signature WMH patterns. This regional vulnerability may incite future studies into how arteriolosclerosis and Aß42 pathology affect the brain's white matter. HIGHLIGHTS: Key dementia etiologies may be associated with specific patterns of white matter hyperintensities (WMH). We related WMH locations to vascular risk and cerebral Aß42 status in 11 memory clinic cohorts. Aß42 positive status was associated with posterior WMH in splenium and posterior thalamic radiation. Vascular risk was associated with anterior and infratentorial WMH. Amyloid pathology and vascular risk have distinct signature WMH patterns.


Subject(s)
Arteriolosclerosis , Dementia , White Matter , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Male , White Matter/pathology , Arteriolosclerosis/pathology , Amyloid beta-Peptides/metabolism , Dementia/pathology , Magnetic Resonance Imaging
5.
Nat Commun ; 15(1): 202, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172114

ABSTRACT

In Alzheimer's disease, amyloid-beta (Aß) triggers the trans-synaptic spread of tau pathology, and aberrant synaptic activity has been shown to promote tau spreading. Aß induces aberrant synaptic activity, manifesting in increases in the presynaptic growth-associated protein 43 (GAP-43), which is closely involved in synaptic activity and plasticity. We therefore tested whether Aß-related GAP-43 increases, as a marker of synaptic changes, drive tau spreading in 93 patients across the aging and Alzheimer's spectrum with available CSF GAP-43, amyloid-PET and longitudinal tau-PET assessments. We found that (1) higher GAP-43 was associated with faster Aß-related tau accumulation, specifically in brain regions connected closest to subject-specific tau epicenters and (2) that higher GAP-43 strengthened the association between Aß and connectivity-associated tau spread. This suggests that GAP-43-related synaptic changes are linked to faster Aß-related tau spread across connected regions and that synapses could be key targets for preventing tau spreading in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/metabolism , GAP-43 Protein/genetics , GAP-43 Protein/metabolism , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Positron-Emission Tomography , Cognitive Dysfunction/metabolism , Biomarkers/metabolism
6.
Eur J Nucl Med Mol Imaging ; 51(4): 1035-1049, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38049659

ABSTRACT

PURPOSE: The main objectives were to test whether (1) a decrease in myelin is associated with enhanced rate of fibrillar tau accumulation and cognitive decline in Alzheimer's disease, and (2) whether apolipoprotein E (APOE) ε4 genotype is associated with worse myelin decrease and thus tau accumulation. METHODS: To address our objectives, we repurposed florbetapir-PET as a marker of myelin in the white matter (WM) based on previous validation studies showing that beta-amyloid (Aß) PET tracers bind to WM myelin. We assessed 43 Aß-biomarker negative (Aß-) cognitively normal participants and 108 Aß+ participants within the AD spectrum with florbetapir-PET at baseline and longitudinal flortaucipir-PET as a measure of fibrillar tau (tau-PET) over ~ 2 years. In linear regression analyses, we tested florbetapir-PET in the whole WM and major fiber tracts as predictors of tau-PET accumulation in a priori defined regions of interest (ROIs) and fiber-tract projection areas. In mediation analyses we tested whether tau-PET accumulation mediates the effect of florbetapir-PET in the whole WM on cognition. Finally, we assessed the role of myelin alteration on the association between APOE and tau-PET accumulation. RESULTS: Lower florbetapir-PET in the whole WM or at a given fiber tract was predictive of faster tau-PET accumulation in Braak stages or the connected grey matter areas in Aß+ participants. Faster tau-PET accumulation in higher cortical brain areas mediated the association between a decrease in florbetapir-PET in the WM and a faster rate of decline in global cognition and episodic memory. APOE ε4 genotype was associated with a worse decrease in the whole WM florbetapir-PET and thus enhanced tau-PET accumulation. CONCLUSION: Myelin alterations are associated in an APOE ε4 dependent manner with faster tau progression and cognitive decline, and may therefore play a role in the etiology of AD.


Subject(s)
Alzheimer Disease , Aniline Compounds , Cognitive Dysfunction , Demyelinating Diseases , Ethylene Glycols , Humans , Apolipoprotein E4/genetics , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoproteins E , Brain/metabolism , Cognitive Dysfunction/metabolism , Demyelinating Diseases/metabolism , tau Proteins/metabolism , Positron-Emission Tomography
7.
JAMA Neurol ; 80(12): 1295-1306, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37930695

ABSTRACT

Importance: For the Alzheimer disease (AD) therapies to effectively attenuate clinical progression, it may be critical to intervene before the onset of amyloid-associated tau spreading, which drives neurodegeneration and cognitive decline. Time points at which amyloid-associated tau spreading accelerates may depend on individual risk factors, such as apolipoprotein E ε4 (ApoE4) carriership, which is linked to faster disease progression; however, the association of ApoE4 with amyloid-related tau spreading is unclear. Objective: To assess if ApoE4 carriers show accelerated amyloid-related tau spreading and propose amyloid positron emission tomography (PET) thresholds at which tau spreading accelerates in ApoE4 carriers vs noncarriers. Design, Setting, and Participants: This cohort study including combined ApoE genotyping, amyloid PET, and longitudinal tau PET from 2 independent samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 237; collected from April 2015 to August 2022) and Avid-A05 (n = 130; collected from December 2013 to July 2017) with a mean (SD) tau PET follow-up time of 1.9 (0.96) years in ADNI and 1.4 (0.23) years in Avid-A05. ADNI is an observational multicenter Alzheimer disease neuroimaging initiative and Avid-A05 an observational clinical trial. Participants classified as cognitively normal (152 in ADNI and 77 in Avid-A05) or mildly cognitively impaired (107 in ADNI and 53 in Avid-A05) were selected based on ApoE genotyping, amyloid-PET, and longitudinal tau PET data availability. Participants with ApoE ε2/ε4 genotype or classified as having dementia were excluded. Resting-state functional magnetic resonance imaging connectivity templates were based on 42 healthy participants in ADNI. Main Outcomes and Measures: Mediation of amyloid PET on the association between ApoE4 status and subsequent tau PET increase through Braak stage regions and interaction between ApoE4 status and amyloid PET with annual tau PET increase through Braak stage regions and connectivity-based spreading stages (tau epicenter connectivity ranked regions). Results: The mean (SD) age was 73.9 (7.35) years among the 237 ADNI participants and 70.2 (9.7) years among the 130 Avid-A05 participants. A total of 107 individuals in ADNI (45.1%) and 45 in Avid-A05 (34.6%) were ApoE4 carriers. Across both samples, we found that higher amyloid PET-mediated ApoE4-related tau PET increased globally (ADNI b, 0.15; 95% CI, 0.05-0.28; P = .001 and Avid-A05 b, 0.33; 95% CI, 0.14-0.54; P < .001) and in earlier Braak regions. Further, we found a significant association between ApoE4 status by amyloid PET interaction and annual tau PET increases consistently through early Braak- and connectivity-based stages where amyloid-related tau accumulation was accelerated in ApoE4carriers vs noncarriers at lower centiloid thresholds, corrected for age and sex. Conclusions and Relevance: The findings in this study indicate that amyloid-related tau accumulation was accelerated in ApoE4 carriers at lower amyloid levels, suggesting that ApoE4 may facilitate earlier amyloid-driven tau spreading across connected brain regions. Possible therapeutic implications might be further investigated to determine when best to prevent tau spreading and thus cognitive decline depending on ApoE4 status.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/complications , Apolipoprotein E4/genetics , tau Proteins/metabolism , Antibodies, Monoclonal , Cohort Studies , Amyloid beta-Peptides/metabolism , Amyloid , Apolipoproteins E/genetics , Brain/pathology , Positron-Emission Tomography , Cognitive Dysfunction/pathology , Genotype
8.
Neuroimage Clin ; 40: 103547, 2023.
Article in English | MEDLINE | ID: mdl-38035457

ABSTRACT

INTRODUCTION: The spatial distribution of white matter hyperintensities (WMH) on MRI is often considered in the diagnostic evaluation of patients with cognitive problems. In some patients, clinicians may classify WMH patterns as "unusual", but this is largely based on expert opinion, because detailed quantitative information about WMH distribution frequencies in a memory clinic setting is lacking. Here we report voxel wise 3D WMH distribution frequencies in a large multicenter dataset and also aimed to identify individuals with unusual WMH patterns. METHODS: Individual participant data (N = 3525, including 777 participants with subjective cognitive decline, 1389 participants with mild cognitive impairment and 1359 patients with dementia) from eleven memory clinic cohorts, recruited through the Meta VCI Map Consortium, were used. WMH segmentations were provided by participating centers or performed in Utrecht and registered to the Montreal Neurological Institute (MNI)-152 brain template for spatial normalization. To determine WMH distribution frequencies, we calculated WMH probability maps at voxel level. To identify individuals with unusual WMH patterns, region-of-interest (ROI) based WMH probability maps, rule-based scores, and a machine learning method (Local Outlier Factor (LOF)), were implemented. RESULTS: WMH occurred in 82% of voxels from the white matter template with large variation between subjects. Only a small proportion of the white matter (1.7%), mainly in the periventricular areas, was affected by WMH in at least 20% of participants. A large portion of the total white matter was affected infrequently. Nevertheless, 93.8% of individual participants had lesions in voxels that were affected in less than 2% of the population, mainly located in subcortical areas. Only the machine learning method effectively identified individuals with unusual patterns, in particular subjects with asymmetric WMH distribution or with WMH at relatively rarely affected locations despite common locations not being affected. DISCUSSION: Aggregating data from several memory clinic cohorts, we provide a detailed 3D map of WMH lesion distribution frequencies, that informs on common as well as rare localizations. The use of data-driven analysis with LOF can be used to identify unusual patterns, which might serve as an alert that rare causes of WMH should be considered.


Subject(s)
Cognitive Dysfunction , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Neuroimaging , Cognitive Dysfunction/pathology , Multicenter Studies as Topic
9.
Stroke ; 54(12): 3021-3029, 2023 12.
Article in English | MEDLINE | ID: mdl-37901947

ABSTRACT

BACKGROUND: White matter hyperintensities (WMH) are associated with cognitive dysfunction after ischemic stroke. Yet, uncertainty remains about affected domains, the role of other preexisting brain injury, and infarct types in the relation between WMH burden and poststroke cognition. We aimed to disentangle these factors in a large sample of patients with ischemic stroke from different cohorts. METHODS: We pooled and harmonized individual patient data (n=1568) from 9 cohorts, through the Meta VCI Map consortium (www.metavcimap.org). Included cohorts comprised patients with available magnetic resonance imaging and multidomain cognitive assessment <15 months poststroke. In this individual patient data meta-analysis, linear mixed models were used to determine the association between WMH volume and domain-specific cognitive functioning (Z scores; attention and executive functioning, processing speed, language and verbal memory) for the total sample and stratified by infarct type. Preexisting brain injury was accounted for in the multivariable models and all analyses were corrected for the study site as a random effect. RESULTS: In the total sample (67 years [SD, 11.5], 40% female), we found a dose-dependent inverse relationship between WMH volume and poststroke cognitive functioning across all 4 cognitive domains (coefficients ranging from -0.09 [SE, 0.04, P=0.01] for verbal memory to -0.19 [SE, 0.03, P<0.001] for attention and executive functioning). This relation was independent of acute infarct volume and the presence of lacunes and old infarcts. In stratified analyses, the relation between WMH volume and domain-specific functioning was also largely independent of infarct type. CONCLUSIONS: In patients with ischemic stroke, increasing WMH volume is independently associated with worse cognitive functioning across all major domains, regardless of old ischemic lesions and infarct type.


Subject(s)
Brain Injuries , Ischemic Stroke , Stroke , White Matter , Humans , Female , Male , Brain/diagnostic imaging , Brain/pathology , Ischemic Stroke/complications , White Matter/diagnostic imaging , White Matter/pathology , Cognition , Cohort Studies , Magnetic Resonance Imaging , Brain Injuries/pathology , Infarction/pathology , Stroke/complications , Stroke/diagnostic imaging , Stroke/pathology , Neuropsychological Tests
10.
Lancet Neurol ; 22(7): 602-618, 2023 07.
Article in English | MEDLINE | ID: mdl-37236211

ABSTRACT

Cerebral small vessel disease (SVD) is common during ageing and can present as stroke, cognitive decline, neurobehavioural symptoms, or functional impairment. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive and other symptoms and affect activities of daily living. Standards for Reporting Vascular Changes on Neuroimaging 1 (STRIVE-1) categorised and standardised the diverse features of SVD that are visible on structural MRI. Since then, new information on these established SVD markers and novel MRI sequences and imaging features have emerged. As the effect of combined SVD imaging features becomes clearer, a key role for quantitative imaging biomarkers to determine sub-visible tissue damage, subtle abnormalities visible at high-field strength MRI, and lesion-symptom patterns, is also apparent. Together with rapidly emerging machine learning methods, these metrics can more comprehensively capture the effect of SVD on the brain than the structural MRI features alone and serve as intermediary outcomes in clinical trials and future routine practice. Using a similar approach to that adopted in STRIVE-1, we updated the guidance on neuroimaging of vascular changes in studies of ageing and neurodegeneration to create STRIVE-2.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Activities of Daily Living , Neuroimaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Cerebral Small Vessel Diseases/diagnostic imaging
11.
EMBO Mol Med ; 15(2): e16987, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36620941

ABSTRACT

Microglial activation occurs early in Alzheimer's disease (AD) and previous studies reported both detrimental and protective effects of microglia on AD progression. Here, we used CSF sTREM2 to investigate disease stage-dependent drivers of microglial activation and to determine downstream consequences on AD progression. We included 402 patients with measures of earliest beta-amyloid (CSF Aß1-42 ) and late-stage fibrillary Aß pathology (amyloid-PET centiloid), as well as sTREM2, p-tau181 , and FDG-PET. To determine disease stage, we stratified participants into early Aß-accumulators (Aß CSF+/PET-; n = 70) or late Aß-accumulators (Aß CSF+/PET+; n = 201) plus 131 controls. In early Aß-accumulators, higher centiloid was associated with cross-sectional/longitudinal sTREM2 and p-tau181 increases. Further, higher sTREM2 mediated the association between centiloid and cross-sectional/longitudinal p-tau181 increases and higher sTREM2 was associated with FDG-PET hypermetabolism. In late Aß-accumulators, we found no association between centiloid and sTREM2 but a cross-sectional association between higher sTREM2, higher p-tau181 and glucose hypometabolism. Our findings suggest that a TREM2-related microglial response follows earliest Aß fibrillization, manifests in inflammatory glucose hypermetabolism and may facilitate subsequent p-tau181 increases in earliest AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides , Biomarkers , Cross-Sectional Studies , Fluorodeoxyglucose F18 , Glucose , tau Proteins
12.
Brain ; 146(2): 678-689, 2023 02 13.
Article in English | MEDLINE | ID: mdl-35859352

ABSTRACT

Alzheimer's disease and cerebral small vessel disease are the two leading causes of cognitive decline and dementia and coexist in most memory clinic patients. White matter damage as assessed by diffusion MRI is a key feature in both Alzheimer's and cerebral small vessel disease. However, disease-specific biomarkers of white matter alterations are missing. Recent advances in diffusion MRI operating on the fixel level (fibre population within a voxel) promise to advance our understanding of disease-related white matter alterations. Fixel-based analysis allows derivation of measures of both white matter microstructure, measured by fibre density, and macrostructure, measured by fibre-bundle cross-section. Here, we evaluated the capacity of these state-of-the-art fixel metrics to disentangle the effects of cerebral small vessel disease and Alzheimer's disease on white matter integrity. We included three independent samples (total n = 387) covering genetically defined cerebral small vessel disease and age-matched controls, the full spectrum of biomarker-confirmed Alzheimer's disease including amyloid- and tau-PET negative controls and a validation sample with presumed mixed pathology. In this cross-sectional analysis, we performed group comparisons between patients and controls and assessed associations between fixel metrics within main white matter tracts and imaging hallmarks of cerebral small vessel disease (white matter hyperintensity volume, lacune and cerebral microbleed count) and Alzheimer's disease (amyloid- and tau-PET), age and a measure of neurodegeneration (brain volume). Our results showed that (i) fibre density was reduced in genetically defined cerebral small vessel disease and strongly associated with cerebral small vessel disease imaging hallmarks; (ii) fibre-bundle cross-section was mainly associated with brain volume; and (iii) both fibre density and fibre-bundle cross-section were reduced in the presence of amyloid, but not further exacerbated by abnormal tau deposition. Fixel metrics were only weakly associated with amyloid- and tau-PET. Taken together, our results in three independent samples suggest that fibre density captures the effect of cerebral small vessel disease, while fibre-bundle cross-section is largely determined by neurodegeneration. The ability of fixel-based imaging markers to capture distinct effects on white matter integrity can propel future applications in the context of precision medicine.


Subject(s)
Alzheimer Disease , Cerebral Small Vessel Diseases , Vascular Diseases , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging/methods , Amyloidogenic Proteins , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Brain/diagnostic imaging , Brain/pathology
13.
Eur J Nucl Med Mol Imaging ; 50(2): 423-434, 2023 01.
Article in English | MEDLINE | ID: mdl-36102964

ABSTRACT

PURPOSE: Early after [18F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [18F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [18F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. METHODS: Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0-60 min) [18F]PI-2620 PET imaging. Regional perfusion (0.5-2.5 min p.i.) and tau load (20-40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference]. Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p < 0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value - 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset (n = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). RESULTS: Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale (R = 0.402; p = 0.0012) and activities of daily living (R = - 0.431; p = 0.0005). CONCLUSION: [18F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression.


Subject(s)
Alzheimer Disease , Corticobasal Degeneration , Supranuclear Palsy, Progressive , Aged , Female , Humans , Middle Aged , Activities of Daily Living , Alzheimer Disease/complications , Corticobasal Degeneration/diagnostic imaging , Neurodegenerative Diseases/diagnostic imaging , Positron-Emission Tomography , Supranuclear Palsy, Progressive/diagnostic imaging
14.
Alzheimers Dement ; 19(6): 2420-2432, 2023 06.
Article in English | MEDLINE | ID: mdl-36504357

ABSTRACT

INTRODUCTION: Impact of white matter hyperintensities (WMH) on cognition likely depends on lesion location, but a comprehensive map of strategic locations is lacking. We aimed to identify these locations in a large multicenter study. METHODS: Individual patient data (n = 3525) from 11 memory clinic cohorts were harmonized. We determined the association of WMH location with attention and executive functioning, information processing speed, language, and verbal memory performance using voxel-based and region of interest tract-based analyses. RESULTS: WMH in the left and right anterior thalamic radiation, forceps major, and left inferior fronto-occipital fasciculus were significantly related to domain-specific impairment, independent of total WMH volume and atrophy. A strategic WMH score based on these tracts inversely correlated with performance in all domains. DISCUSSION: The data show that the impact of WMH on cognition is location-dependent, primarily involving four strategic white matter tracts. Evaluation of WMH location may support diagnosing vascular cognitive impairment. HIGHLIGHTS: We analyzed white matter hyperintensities (WMH) in 3525 memory clinic patients from 11 cohorts The impact of WMH on cognition depends on location We identified four strategic white matter tracts A single strategic WMH score was derived from these four strategic tracts The strategic WMH score was an independent determinant of four cognitive domains.


Subject(s)
Cognitive Dysfunction , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognition , Executive Function , Neuropsychological Tests
15.
Alzheimers Dement ; 19(5): 2034-2046, 2023 05.
Article in English | MEDLINE | ID: mdl-36433865

ABSTRACT

INTRODUCTION: Lower network segregation is associated with accelerated cognitive decline in Alzheimer's disease (AD), yet it is unclear whether less segregated brain networks facilitate connectivity-mediated tau spreading. METHODS: We combined resting state functional magnetic resonance imaging (fMRI) with longitudinal tau positron emission tomography (PET) in 42 betamyloid-negative controls and 81 amyloid beta positive individuals across the AD spectrum. Network segregation was determined using resting-state fMRI-assessed connectivity among 400 cortical regions belonging to seven networks. RESULTS: AD subjects with higher network segregation exhibited slower brain-wide tau accumulation relative to their baseline entorhinal tau PET burden (typical onset site of tau pathology). Second, by identifying patient-specific tau epicenters with highest baseline tau PET we found that stronger epicenter segregation was associated with a slower rate of tau accumulation in the rest of the brain in relation to baseline epicenter tau burden. DISCUSSION: Our results indicate that tau spreading is facilitated by a more diffusely organized connectome, suggesting that brain network topology modulates tau spreading in AD. HIGHLIGHTS: Higher brain network segregation is associated with attenuated tau pathology accumulation in Alzheimer's disease (AD). A patient-tailored approach allows for the more precise localization of tau epicenters. The functional segregation of subject-specific tau epicenters predicts the rate of future tau accumulation.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Connectome , tau Proteins , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cognitive Dysfunction/pathology , Connectome/methods , Magnetic Resonance Imaging/methods , Positron-Emission Tomography , tau Proteins/metabolism
16.
Alzheimers Dement ; 19(4): 1152-1163, 2023 04.
Article in English | MEDLINE | ID: mdl-35876563

ABSTRACT

INTRODUCTION: It remains unknown whether the global small vessel disease (SVD) burden predicts post-stroke outcomes. METHODS: In a prospective multicenter study of 666 ischemic and hemorrhagic stroke patients, we quantified magnetic resonance imaging (MRI)-based SVD markers (lacunes, white matter hyperintensities, microbleeds, perivascular spaces) and explored associations with 6- and 12-month cognitive (battery of 15 neuropsychological tests) and functional (modified Rankin scale) outcomes. RESULTS: A global SVD score (range 0-4) was associated with cognitive impairment; worse performance in executive function, attention, language, and visuospatial ability; and worse functional outcome across a 12-month follow-up. Although the global SVD score did not improve prediction, individual SVD markers, assessed across their severity range, improved the calibration, discrimination, and reclassification of predictive models including demographic, clinical, and other imaging factors. DISCUSSION: SVD presence and severity are associated with worse cognitive and functional outcomes 12 months after stroke. Assessing SVD severity may aid prognostication for stroke patients. HIGHLIGHTS: In a multi-center cohort, we explored associations of small vessel disease (SVD) burden with stroke outcomes. SVD burden associates with post-stroke cognitive and functional outcomes. A currently used score of SVD burden does not improve the prediction of poor outcomes. Assessing the severity of SVD lesions adds predictive value beyond known predictors. To add predictive value in assessing SVD in stroke patients, SVD burden scores should integrate lesion severity.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Stroke , Humans , Prospective Studies , Stroke/complications , Stroke/pathology , Cerebral Small Vessel Diseases/pathology , Cognitive Dysfunction/complications , Magnetic Resonance Imaging , Cognition
17.
Alzheimers Res Ther ; 14(1): 166, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36345046

ABSTRACT

BACKGROUND: Tau-PET is a prognostic marker for cognitive decline in Alzheimer's disease, and the heterogeneity of tau-PET patterns matches cognitive symptom heterogeneity. Thus, tau-PET may allow precision-medicine prediction of individual tau-related cognitive trajectories, which can be important for determining patient-specific cognitive endpoints in clinical trials. Here, we aimed to examine whether tau-PET in cognitive-domain-specific brain regions, identified via fMRI meta-analyses, allows the prediction of domain-specific cognitive decline. Further, we aimed to determine whether tau-PET-informed personalized cognitive composites capture patient-specific cognitive trajectories more sensitively than conventional cognitive measures. METHODS: We included Alzheimer's Disease Neuroimaging Initiative (ADNI) participants classified as controls (i.e., amyloid-negative, cognitively normal, n = 121) or Alzheimer's disease-spectrum (i.e., amyloid-positive, cognitively normal to dementia, n = 140), plus 111 AVID-1451-A05 participants for independent validation (controls/Alzheimer's disease-spectrum=46/65). All participants underwent baseline 18F-flortaucipir tau-PET, amyloid-PET, and longitudinal cognitive testing to assess annual cognitive changes (i.e., episodic memory, language, executive functioning, visuospatial). Cognitive changes were calculated using linear mixed models. Independent meta-analytical task-fMRI activation maps for each included cognitive domain were obtained from the Neurosynth database and applied to tau-PET to determine tau-PET signal in cognitive-domain-specific brain regions. In bootstrapped linear regression, we assessed the strength of the relationship (i.e., partial R2) between cognitive-domain-specific tau-PET vs. global or temporal-lobe tau-PET and cognitive changes. Further, we used tau-PET-based prediction of domain-specific decline to compose personalized cognitive composites that were tailored to capture patient-specific cognitive decline. RESULTS: In both amyloid-positive cohorts (ADNI [age = 75.99±7.69] and A05 [age = 74.03±9.03]), cognitive-domain-specific tau-PET outperformed global and temporal-lobe tau-PET for predicting future cognitive decline in episodic memory, language, executive functioning, and visuospatial abilities. Further, a tau-PET-informed personalized cognitive composite across cognitive domains enhanced the sensitivity to assess cognitive decline in amyloid-positive subjects, yielding lower sample sizes required for detecting simulated intervention effects compared to conventional cognitive endpoints (i.e., memory composite, global cognitive composite). However, the latter effect was less strong in A05 compared to the ADNI cohort. CONCLUSION: Combining tau-PET with task-fMRI-derived maps of major cognitive domains facilitates the prediction of domain-specific cognitive decline. This approach may help to increase the sensitivity to detect Alzheimer's disease-related cognitive decline and to determine personalized cognitive endpoints in clinical trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Magnetic Resonance Imaging/methods , tau Proteins/metabolism , Positron-Emission Tomography/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Brain/diagnostic imaging , Brain/metabolism , Amyloid/metabolism , Patient-Centered Care , Amyloid beta-Peptides/metabolism
18.
Neuroimage Clin ; 36: 103217, 2022.
Article in English | MEDLINE | ID: mdl-36240537

ABSTRACT

PURPOSE: To investigate if network thresholding and raw data harmonization improve consistency of diffusion MRI (dMRI)-based brain networks while also increasing precision and sensitivity to detect disease effects in multicentre datasets. METHODS: Brain networks were reconstructed from dMRI of five samples with cerebral small vessel disease (SVD; 629 patients, 166 controls), as a clinically relevant exemplar condition for studies on network integrity. We evaluated consistency of network architecture in age-matched controls, by calculating cross-site differences in connection probability and fractional anisotropy (FA). Subsequently we evaluated precision and sensitivity to disease effects by identifying connections with low FA in sporadic SVD patients relative to controls, using more severely affected patients with a pure form of genetically defined SVD as reference. RESULTS: In controls, thresholding and harmonization improved consistency of network architecture, minimizing cross-site differences in connection probability and FA. In patients relative to controls, thresholding improved precision to detect disrupted connections by removing false positive connections (precision, before: 0.09-0.19; after: 0.38-0.70). Before harmonization, sensitivity was low within individual sites, with few connections surviving multiple testing correction (k = 0-25 connections). Harmonization and pooling improved sensitivity (k = 38), while also achieving higher precision when combined with thresholding (0.97). CONCLUSION: We demonstrated that network consistency, precision and sensitivity to detect disease effects in SVD are improved by thresholding and harmonization. We recommend introducing these techniques to leverage large existing multicentre datasets to better understand the impact of disease on brain networks.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Humans , Diffusion Tensor Imaging , Neural Pathways , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , White Matter/diagnostic imaging
19.
Alzheimers Res Ther ; 14(1): 139, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153607

ABSTRACT

BACKGROUND: In Alzheimer's disease (AD), fibrillar tau initially occurs locally and progresses preferentially between closely connected regions. However, the underlying sources of regional vulnerability to tau pathology remain unclear. Previous brain-autopsy findings suggest that the myelin levels-which differ substantially between white matter tracts in the brain-are a key modulating factor of region-specific susceptibility to tau deposition. Here, we investigated whether myelination differences between fiber tracts of the human connectome are predictive of the interregional spreading of tau pathology in AD. METHODS: We included two independently recruited samples consisting of amyloid-PET-positive asymptomatic and symptomatic elderly individuals, in whom tau-PET was obtained at baseline (ADNI: n = 275; BioFINDER-1: n = 102) and longitudinally in a subset (ADNI: n = 123, mean FU = 1.53 [0.69-3.95] years; BioFINDER-1: n = 39, mean FU = 1.87 [1.21-2.78] years). We constructed MRI templates of the myelin water fraction (MWF) in 200 gray matter ROIs and connecting fiber tracts obtained from adult cognitively normal participants. Using the same 200 ROI brain-parcellation atlas, we obtained tau-PET ROI values from each individual in ADNI and BioFINDER-1. In a spatial regression analysis, we first tested the association between cortical myelin and group-average tau-PET signal in the amyloid-positive and control groups. Secondly, employing a previously established approach of modeling tau-PET spreading based on functional connectivity between ROIs, we estimated in a linear regression analysis, whether the level of fiber-tract myelin modulates the association between functional connectivity and longitudinal tau-PET spreading (i.e., covariance) between ROIs. RESULTS: We found that higher myelinated cortical regions show lower tau-PET uptake (ADNI: rho = - 0.267, p < 0.001; BioFINDER-1: rho = - 0.175, p = 0.013). Fiber-tract myelin levels modulated the association between functional connectivity and tau-PET spreading, such that at higher levels of fiber-tract myelin, the association between stronger connectivity and higher covariance of tau-PET between the connected ROIs was attenuated (interaction fiber-tract myelin × functional connectivity: ADNI: ß = - 0.185, p < 0.001; BioFINDER-1: ß = - 0.166, p < 0.001). CONCLUSION: Higher levels of myelin are associated with lower susceptibility of the connected regions to accumulate fibrillar tau. These results enhance our understanding of brain substrates that explain regional variation in tau accumulation and encourage future studies to investigate potential underlying mechanisms.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Adult , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins , Brain/metabolism , Cognitive Dysfunction/pathology , Humans , Magnetic Resonance Imaging/methods , Myelin Sheath/metabolism , Myelin Sheath/pathology , Positron-Emission Tomography/methods , tau Proteins/metabolism
20.
Nat Commun ; 13(1): 4899, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35987901

ABSTRACT

In Alzheimer's disease (AD), younger symptom onset is associated with accelerated disease progression and tau spreading, yet the mechanisms underlying faster disease manifestation are unknown. To address this, we combined resting-state fMRI and longitudinal tau-PET in two independent samples of controls and biomarker-confirmed AD patients (ADNI/BioFINDER, n = 240/57). Consistent across both samples, we found that younger symptomatic AD patients showed stronger tau-PET in globally connected fronto-parietal hubs, i.e., regions that are critical for maintaining cognition in AD. Stronger tau-PET in hubs predicted faster subsequent tau accumulation, suggesting that tau in globally connected regions facilitates connectivity-mediated tau spreading. Further, stronger tau-PET in hubs mediated the association between younger age and faster tau accumulation in symptomatic AD patients, which predicted faster cognitive decline. These independently validated findings suggest that younger AD symptom onset is associated with stronger tau pathology in brain hubs, and accelerated tau spreading throughout connected brain regions and cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cognitive Dysfunction/pathology , Humans , Positron-Emission Tomography , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...