Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 108(5): 057002, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22400953

ABSTRACT

We report the characterization of a two-qubit processor implemented with two capacitively coupled tunable superconducting qubits of the transmon type, each qubit having its own nondestructive single-shot readout. The fixed capacitive coupling yields the sqrt[iSWAP] two-qubit gate for a suitable interaction time. We reconstruct by state tomography the coherent dynamics of the two-bit register as a function of the interaction time, observe a violation of the Bell inequality by 22 standard deviations after correcting readout errors, and measure by quantum process tomography a gate fidelity of 90%.

2.
Phys Rev Lett ; 107(22): 220501, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-22182018

ABSTRACT

We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare a superposition of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit later on. These results constitute a proof of concept of spin-ensemble based quantum memory for superconducting qubits.

3.
Phys Rev Lett ; 106(16): 167002, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21599402

ABSTRACT

We have performed spectroscopic measurements of a superconducting qubit dispersively coupled to a nonlinear resonator driven by a pump microwave field. Measurements of the qubit frequency shift provide a sensitive probe of the intracavity field, yielding a precise characterization of the resonator nonlinearity. The qubit linewidth has a complex dependence on the pump frequency and amplitude, which is correlated with the gain of the nonlinear resonator operated as a small-signal amplifier. The corresponding dephasing rate is found to be close to the quantum limit in the low-gain limit of the amplifier.

SELECTION OF CITATIONS
SEARCH DETAIL
...