Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766054

ABSTRACT

Identifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely causal variants and controls, identifying 12,025 regulatory variants with high precision. Although the effects of these variants largely agree with orthogonal measures of function, only 69% can plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that epistasis is prevalent for variants in close proximity and identify multiple functional variants on the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study provides a systematic functional characterization of likely causal common variants underlying complex and molecular human traits, enabling new insights into the regulatory grammar underlying disease risk.

2.
J Am Soc Echocardiogr ; 37(2): 259-267, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37995938

ABSTRACT

BACKGROUND: The dynamic shape of the normal adult mitral annulus has been shown to be important to mitral valve function. However, annular dynamics of the healthy mitral valve in children have yet to be explored. The aim of this study was to model and quantify the shape and major modes of variation of pediatric mitral valve annuli in four phases of the cardiac cycle using transthoracic echocardiography. METHODS: The mitral valve annuli of 100 children and young adults with normal findings on three-dimensional echocardiography were modeled in four different cardiac phases using the SlicerHeart extension for 3D Slicer. Annular metrics were quantified using SlicerHeart, and optimal normalization to body surface area was explored. Mean annular shapes and the principal components of variation were computed using custom code implemented in a new SlicerHeart module (Annulus Shape Analyzer). Shape was regressed over metrics of age and body surface area, and mean shapes for five age-stratified groups were generated. RESULTS: The ratio of annular height to commissural width of the mitral valve ("saddle shape") changed significantly throughout age for systolic phases (P < .001) but within a narrow range (median range, 0.20-0.25). Annular metrics changed statistically significantly between the diastolic and systolic phases of the cardiac cycle. Visually, the annular shape was maintained with respect to age and body surface area. Principal-component analysis revealed that the pediatric mitral annulus varies primarily in size (mode 1), ratio of annular height to commissural width (mode 2), and sphericity (mode 3). CONCLUSIONS: The saddle-shaped mitral annulus is maintained throughout childhood but varies significantly throughout the cardiac cycle. The major modes of variation in the pediatric mitral annulus are due to size, ratio of annular height to commissural width, and sphericity. The generation of age- and size-specific mitral annular shapes may inform the development of appropriately scaled absorbable or expandable mitral annuloplasty rings for children.


Subject(s)
Echocardiography, Three-Dimensional , Heart Valve Prosthesis , Mitral Valve Insufficiency , Young Adult , Humans , Child , Mitral Valve/surgery , Echocardiography , Echocardiography, Three-Dimensional/methods
3.
Inf Process Med Imaging ; 13939: 810-821, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37416485

ABSTRACT

Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject's function and its trajectory of shape change over time. Whereas mixed-effects (or hierarchical) modeling is the statistical method of choice for analysis of longitudinal data, we here propose its extension as hierarchical geodesic polynomial model (HGPM) for multilevel analyses of longitudinal shape data. 3D shapes are transformed to a non-Euclidean shape space for regression analysis using geodesics on a high dimensional Riemannian manifold. At the subject-wise level, each individual trajectory of shape change is represented by a univariate geodesic polynomial model on timestamps. At the population level, multivariate polynomial expansion is applied to uni/multivariate geodesic polynomial models for both anchor points and tangent vectors. As such, the trajectory of an individual subject's shape changes over time can be modeled accurately with a reduced number of parameters, and population-level effects from multiple covariates on trajectories can be well captured. The implemented HGPM is validated on synthetic examples of points on a unit 3D sphere. Further tests on clinical 4D right ventricular data show that HGPM is capable of capturing observable effects on shapes attributed to changes in covariates, which are consistent with qualitative clinical evaluations. HGPM demonstrates its effectiveness in modeling shape changes at both subject-wise and population levels, which is promising for future studies of the relationship between shape changes over time and the level of dysfunction severity on anatomical objects associated with disease.

4.
Cell Genom ; 3(1): 100234, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36777181

ABSTRACT

Both upregulation and downregulation by cis-regulatory elements help modulate precise gene expression. However, our understanding of repressive elements is far more limited than activating elements. To address this gap, we characterized RE1, a group of transcriptional silencers bound by REST, at genome-wide scale using a modified massively parallel reporter assay (MPRAduo). MPRAduo empirically defined a minimal binding strength of REST (REST motif-intrinsic value [m-value]), above which cofactors colocalize and silence transcription. We identified 1,500 human variants that alter RE1 silencing and found that their effect sizes are predictable when they overlap with REST-binding sites above the m-value. Additionally, we demonstrate that non-canonical REST-binding motifs exhibit silencer function only if they precisely align half sites with specific spacer lengths. Our results show mechanistic insights into RE1, which allow us to predict its activity and effect of variants on RE1, providing a paradigm for performing genome-wide functional characterization of transcription-factor-binding sites.

5.
Cell Rep Med ; 3(4): 100583, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35480627

ABSTRACT

The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant's respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta's enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , New England/epidemiology , Public Health , SARS-CoV-2/genetics
6.
Nat Microbiol ; 7(1): 108-119, 2022 01.
Article in English | MEDLINE | ID: mdl-34907347

ABSTRACT

The global spread and continued evolution of SARS-CoV-2 has driven an unprecedented surge in viral genomic surveillance. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine laboratory processes and results. This challenge will increase with the expanding global production of sequences across a variety of laboratories for epidemiological and clinical interpretation, as well as for genomic surveillance of emerging diseases in future outbreaks. We present SDSI + AmpSeq, an approach that uses 96 synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination throughout the sequencing workflow. We apply SDSIs to the ARTIC Consortium's amplicon design, demonstrate their utility and efficiency in a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases and validate them across 6,676 diagnostic samples at multiple laboratories. We establish that SDSI + AmpSeq provides increased confidence in genomic data by detecting and correcting for relatively common, yet previously unobserved modes of error, including spillover and sample swaps, without impacting genome recovery.


Subject(s)
DNA Primers/standards , SARS-CoV-2/genetics , Sequence Analysis/standards , COVID-19/diagnosis , DNA Primers/chemical synthesis , Genome, Viral/genetics , Humans , Quality Control , RNA, Viral/genetics , Reproducibility of Results , Sequence Analysis/methods , Whole Genome Sequencing , Workflow
7.
medRxiv ; 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34642698

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta's infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ∼6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta's enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...