Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37237733

ABSTRACT

The objective of this study was to examine the frequency and extent of antibiotic-resistant pathogens in seafood sold in Malaysia, using a systematic review and meta-analysis approach to analyze primary research studies. Four bibliographic databases were systematically searched for primary studies on occurrence. Meta-analysis using a random-effect model was used to understand the prevalence of antibiotic-resistant bacteria in retail seafood sold in Malaysia. A total of 1938 primary studies were initially identified, among which 13 met the inclusion criteria. In the included primary studies, a total of 2281 seafoods were analyzed for the presence of antibiotic-resistant seafood-borne pathogens. It was observed that 51% (1168/2281) of the seafood was contaminated with pathogens. Overall, the prevalence of antibiotic-resistant seafood-borne pathogens in retail seafood was 55.7% (95% CI: 0.46-0.65). Antibiotic-resistant Salmonella species had an overall prevalence of 59.9% (95% CI: 0.32-0.82) in fish, Vibrio species had an overall prevalence of 67.2% (95% CI: 0.22-0.94) in cephalopods, and MRSA had an overall prevalence of 70.9% (95% CI: 0.36-0.92) in mollusks. It could be concluded that there is a high prevalence of antibiotic-resistant seafood-borne pathogens in the retail seafood sold in Malaysia, which could be of public health importance. Therefore, there is a need for proactive steps to be taken by all stakeholders to reduce the widespread transmission of antibiotic-resistant pathogens from seafood to humans.

2.
J Food Sci Technol ; 54(5): 1321-1332, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28416883

ABSTRACT

Electrolysed oxidising water (E.O. water) is produced by electrolysis of sodium chloride to yield primarily chlorine based oxidising products. At neutral pH this results in hypochlorous acid in the un-protonated form which has the greatest oxidising potential and ability to penetrate microbial cell walls to disrupt the cell membranes. E.O. water has been shown to be an effective method to reduce microbial contamination on food processing surfaces. The efficacy of E.O. water against pathogenic bacteria such as Listeria monocytogenes, Escherichia coli and Vibrio parahaemolyticus has also been extensively confirmed in growth studies of bacteria in culture where the sanitising agent can have direct contact with the bacteria. However it can only lower, but not eliminate, bacteria on processed seafoods. More research is required to understand and optimise the impacts of E.O. pre-treatment sanitation processes on subsequent microbial growth, shelf life, sensory and safety outcomes for packaged seafood products.

SELECTION OF CITATIONS
SEARCH DETAIL
...