Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(25): eabm6504, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35749495

ABSTRACT

Aging has been reported to deteriorate the quantity and quality of mesenchymal stem cells (MSCs), which affect their therapeutic use in regenerative medicine. A dearth of age-related stem cell research further restricts their clinical applications. The present study explores the possibility of using MSCs derived from human gingival tissues (GMSCs) for studying their ex vivo growth characteristics and differentiation potential with respect to donor age. GMSCs displayed decreased in vitro adipogenesis and in vitro and in vivo osteogenesis with age, but in vitro neurogenesis remained unaffected. An increased expression of p53 and SIRT1 with donor age was correlated to their ability of eliminating tumorigenic events through apoptosis or autophagy, respectively. Irrespective of donor age, GMSCs displayed effective immunoregulation and regenerative potential in a mouse model of LPS-induced acute lung injury. Thus, we suggest the potential of GMSCs for designing cell-based immunomodulatory therapeutic approaches and their further extrapolation for acute inflammatory conditions such as acute respiratory distress syndrome and COVID-19.


Subject(s)
COVID-19 , Mesenchymal Stem Cells , Animals , Cell Differentiation , Gingiva , Humans , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis
2.
ACS Appl Bio Mater ; 4(11): 7721-7737, 2021 11 15.
Article in English | MEDLINE | ID: mdl-35006757

ABSTRACT

Translation of tissue engineering strategies for the regeneration of intervertebral disc (IVD) requires a strong understanding of pathophysiology through the relevant animal model. There is no relevant animal model due to differences in disc anatomy, cellular composition, extracellular matrix components, disc physiology, and mechanical strength from humans. However, available animal models if used correctly could provide clinically relevant information for the translation into humans. In this review, we have investigated different types of strategies for the development of clinically relevant animal models to study biomaterials, cells, biomolecular or their combination in developing tissue engineering-based treatment strategies. Tissue engineering strategies that utilize various animal models for IVD regeneration are summarized and outcomes have been discussed. The understanding of animal models for the validation of regenerative approaches is employed to understand and treat the pathophysiology of degenerative disc disease (DDD) before proceeding for human trials. These animal models play an important role in building a therapeutic regime for IVD tissue regeneration, which can serve as a platform for clinical applications.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Biocompatible Materials , Disease Models, Animal , Intervertebral Disc/physiology , Intervertebral Disc Degeneration/therapy , Tissue Engineering
3.
ACS Appl Bio Mater ; 4(2): 1238-1251, 2021 02 15.
Article in English | MEDLINE | ID: mdl-35014477

ABSTRACT

Deformity or fissure within the annulus fibrosus (AF) lamellar structure often results in disc herniation leading to the extrusion of nucleus pulposus (NP), which pushes the adjacent nerve, causing low back pain. Low back pain, frequently associated with the degeneration of the intervertebral disc (IVD), affects around 80% of the population worldwide. The difficulty in mimicking the unique structural characteristics of the native AF tissue presents several challenges to the tissue engineering field for the development of the long-term effective therapeutic strategy for AF tissue regeneration. The AF cell niche possesses less reparative capacity for regeneration and thus compels to develop a strategy to recapitulate damaged AF tissues. We have fabricated a polycaprolactone-supported electrocompacted type-I collagen patch (A-PCL-NH2+Col-I) using surface-modified electrospun-aligned polycaprolactone (A-PCL) nanofibers cross-linked with an electro-compacted type-I collagen patch (Col-I) using EDAC-NHS (1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride and N-hydroxy succinimide). This subtle approach offered a 3D biodegradable scaffold with dense aggregates of anisotropic collagen-I nanofibrils coupled with electrospun-aligned PCL nanofibers, which provide high tensile strength (4.21 ± 1.07 MPa), moduli (24.496 ± 4.85 MPa), low subsidence to failure, and high-water absorption ability. The systemic organization of both the polymers within the scaffold, evident from attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, revealed a uniform degree of fiber alignment assessed by differential interference contrast (DIC) microscopy, field-emission scanning electron microscopy (FE-SEM), and cryo-SEM. The aminolysis of A-PCL nanofibers was established by energy-dispersive X-ray analysis (EDX), while circular dichroic spectra showed that the electro-compacted Col-I patch displayed a triple helical structure, characteristic of collagens. Moreover, the scaffold revealed more hydrophilic, rough nano-features, which provided ample ligands for cell attachment supporting adequate proliferation of primary goat annulus fibrosus (AF) cells, oriented along the fiber direction, and also favored sufficient production of collagen type-I (+32-fold change) and a glycosaminoglycan extracellular matrix (+2.3-fold change) as compared to cell control, respectively. This study thus demonstrates for the first time the practicability of creating an aligned polycaprolactone-supported electrocompacted type-I collagen hydrogel (A-PCL-NH2+Col-I) with significant biomechanical properties, which can be used as an alternative to repair and regenerate AF fissures in degenerated IVD.


Subject(s)
Annulus Fibrosus/drug effects , Collagen Type I/pharmacology , Polyesters/pharmacology , Regeneration/drug effects , Tissue Scaffolds/chemistry , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Collagen Type I/chemistry , Goats , Nanofibers/chemistry , Polyesters/chemistry , Tissue Engineering/methods
4.
ACS Biomater Sci Eng ; 6(2): 779-797, 2020 02 10.
Article in English | MEDLINE | ID: mdl-33464865

ABSTRACT

Aligned tissue architecture is a basic proviso for several organs and tissues like intervertebral discs, tendons, ligaments, muscles, and neurons, which comprises type-I collagen as an eminent extracellular matrix (ECM) protein. Exploiting type-I collagen for the biofabrication of aligned constructs via different approaches is becoming apparent, as it comprises a major fraction of connective tissue, exhibits abundance in ECM, and displays poor antigenicity and immunogenicity, along-with the ease of remodelling adaptability. Collagen hydrogels or composite scaffolds with uniaxial fibril alignment or unidirectional pore architecture having different sizes and densities are being fabricated using electrical, mechanical, and freeze-drying processes which are applicable for tissue engineering and regenerative purposes. This review focuses on several multifarious approaches employed to fabricate anisotropic structures of type-I collagen which influences fibril alignment, pore architecture, stiffness anisotropy, and enhanced mechanical strength and mimics the tissue native microenvironment ushering cell niches to proliferate and differentiate into tissue specific lineages.


Subject(s)
Collagen , Tissue Engineering , Tissue Scaffolds , Collagen Type I , Tendons
5.
Nanomedicine ; 15(1): 218-230, 2019 01.
Article in English | MEDLINE | ID: mdl-30343014

ABSTRACT

Parathyroid hormone (PTH) has been a major contributor to the anabolic therapy for osteoporosis, but its delivery to bone without losing activity and avoiding adverse local effects remain a challenge. Being the natural component of bone, use of hydroxyapatite for this purpose brings a major breakthrough in synergistic anabolism. This study focuses on synthesis, characterization and evaluation of in vitro and in vivo efficacy of PTH (1-34) adsorbed hydroxyapatite nanocarrier for synergistic enhancement in the anabolic activity of PTH for bone regeneration. The negative zeta potential of this nanocarrier facilitated its affinity to the Ca2+ rich bone tissue and solubilization at low pH enhanced specific delivery of PTH to the resorption pits in osteoporotic bone. In this process, PTH retained its anabolic effect and at the same time an increase in bone mineral content indicated enhancement of the net formative effect of the PTH anabolic therapy.


Subject(s)
Anabolic Agents/administration & dosage , Bone Regeneration , Calcium-Regulating Hormones and Agents/administration & dosage , Durapatite/chemistry , Nanotubes/chemistry , Osteoporosis/drug therapy , Parathyroid Hormone/administration & dosage , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Female , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoporosis/metabolism , Ovariectomy
6.
Int J Nanomedicine ; 10: 7477-90, 2015.
Article in English | MEDLINE | ID: mdl-26719690

ABSTRACT

Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Dioscorea/chemistry , Metal Nanoparticles/chemistry , Palladium/chemistry , Plant Extracts/pharmacology , Platinum/chemistry , Cell Proliferation/drug effects , Flow Cytometry , HeLa Cells , Humans , Hydroxyl Radical/chemistry , Metal Nanoparticles/administration & dosage , Microscopy, Electron, Transmission , Nitric Oxide/chemistry , Oxidation-Reduction , Plant Extracts/chemistry , Spectrometry, X-Ray Emission , Superoxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...