Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 11: 543727, 2020.
Article in English | MEDLINE | ID: mdl-33013477

ABSTRACT

Regulation of the peripheral vascular resistance via modulating the vessel diameter has been considered as a main determinant of the arterial blood pressure. Phosphodiesterase enzymes (PDE1-11) hydrolyse cyclic nucleotides, which are key players controlling the vessel diameter and, thus, peripheral resistance. Here, we have tested and reported the effects of a novel selective PDE1 inhibitor (BTTQ) on the cardiovascular system. Normal Sprague Dawley, spontaneously hypertensive (SHR), and Dahl salt-sensitive rats were used to test in vivo the efficacy of the compound. Phosphodiesterase radiometric enzyme assay revealed that BTTQ inhibited all three isoforms of PDE1 in nanomolar concentration, while micromolar concentrations were needed to induce effective inhibition for other PDEs. The myography study conducted on mesenteric arteries revealed a potent vasodilatory effect of the drug, which was confirmed in vivo by an increase in the blood flow in the rat ear arteriols reflected by the rise in the temperature. Furthermore, BTTQ proved a high efficacy in lowering the blood pressure about 9, 36, and 24 mmHg in normal Sprague Dawley, SHR and, Dahl salt-sensitive rats, respectively, compared to the vehicle-treated group. Moreover, additional blood pressure lowering of about 22 mmHg could be achieved when BTTQ was administered on top of ACE inhibitor lisinopril, a current standard of care in the treatment of hypertension. Therefore, PDE1 inhibition induced efficient vasodilation that was accompanied by a significant reduction of blood pressure in different hypertensive rat models. Administration of BTTQ was also associated with increased heart rate in both models of hypertension as well as in the normotensive rats. Thus, PDE1 appears to be an attractive therapeutic target for the treatment of resistant hypertension, while tachycardia needs to be addressed by further compound structural optimization.

2.
J Pharmacol Exp Ther ; 362(1): 108-118, 2017 07.
Article in English | MEDLINE | ID: mdl-28465372

ABSTRACT

LY2584702 is an inhibitor of p70 S6 kinase-1 previously developed for the treatment of cancer. In two phase 1 trials in oncology patients, significant reductions of total cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglyceride were observed. In the current study, we sought to understand the potential mechanism of action of this compound in regulating lipid metabolism. In Long Evans diet-induced obese (DIO) rats, oral administration of LY2584702 for 3-4 weeks led to robust reduction of LDL-C up to 60%. An unexpected finding of liver triglyceride (TG) increase implicated a metabolite of LY2584702, 4-aminopyrazolo[3,4-day]pyrimidine (4-APP), in modulation of lipid metabolism in these rats. We showed that low-dose 4-APP, when administered orally for 3-4 weeks to Long Evans DIO rats, produced lipoprotein profile changes that were strikingly similar to LY2584702. Kinetic studies suggested that both LY2584702 and 4-APP had no effect on chylomicron-TG secretion and only exerted a modest effect on hepatic very low-density lipoprotein (VLDL)-TG secretion. In human hepatoma HepG2 cells, 4-APP, but not LY2584702, increased LDL uptake. We hypothesize that generation of the 4-APP metabolite may contribute to the efficacy of LY2584702 in lowering LDL-C in rats and potentially in humans as well. This mechanism of LDL-C lowering may include inhibition of VLDL production and increase in LDL clearance.


Subject(s)
Adenine/analogs & derivatives , Hypolipidemic Agents/pharmacology , Obesity/blood , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Adenine/pharmacology , Animals , Cholesterol, LDL/blood , Cholesterol, LDL/metabolism , Cholesterol, VLDL/biosynthesis , Cholesterol, VLDL/genetics , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Lipoproteins, LDL/metabolism , Liver/drug effects , Liver/metabolism , Male , Rats , Rats, Long-Evans , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...