Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 88(10): 4156-4168, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37623924

ABSTRACT

Improving total dietary fiber content while maintaining the texture/expansion of extruded products is a challenge. Pectin has a dual function; it is a source of dietary fiber and it also functions as a hydrocolloid, which could improve the texture of high-fiber extruded foods. The objective of this study was to evaluate the impacts of pectin types from citrus peel on the expansion characteristics of starch-cellulose extrudates. High and low methoxyl pectin (HMP and LMP) was added to the starch-cellulose mixtures and extruded using a twin-screw extruder. The pasting properties of raw mixtures, extrusion properties, microstructure, and dietary fiber contents of the extrudates were studied. The inclusion of HMP in raw material improved the peak viscosity (629.7 ± 8.1 to 754.7 ± 80.1 mPa s) and maintained the final viscosity compared to the control (starch-cellulose mixture alone), unlike LMP. HMP relatively maintained the extrusion process parameters such as torque, back pressure, and specific mechanical energy as the control. Interestingly, the addition of 7% of HMP had a similar expansion ratio (3.41 ± 0.08 to 2.35 ± 0.06) compared to the control (3.46 ± 0.08 to 2.32 ± 0.09) under the extrusion conditions studied. The total dietary fiber content improved from 12.22 ± 0.01% to 18.26 ± 0.63% (w/w). HMP maintained the expansion characteristic of starch-cellulose extrudates and improved its total dietary fiber content relative to LMP. Adding HMP to the mixtures improved the extensibility of the melt, favoring bubble growth and expansion of the starch-cellulose extrudates. Fourier transform infrared spectroscopy data suggested that there could be intermolecular interactions between starch, cellulose, and pectin, but the nature of these interactions needs further investigation. PRACTICAL APPLICATION: The study provides practical information on the influence of the addition of high and low methoxyl pectin on starch-cellulose extrudates. The results can help the industry to produce snack products that are more nutritious but are still well accepted by the consumers.

2.
J Food Sci ; 88(4): 1595-1609, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36883972

ABSTRACT

Tamarind seed gum (TSG) is a cold-swelling hydrocolloid with remarkable processing stability and starch synergy. Its use in direct expanded extruded foods has not been documented. The thermal and pasting viscosity properties of six TSG (0%, 0.5%, 1.0%, 2.5%, 5.0%, and 7.5% TSG) and native corn starch blends were characterized by differential scanning calorimetry and ViscoQuick, respectively. These same blends were extruded using a corotating twin-screw extruder at four screw speeds (SSs) (150, 300, 450, and 600 rpm). System back pressure, motor torque, and specific mechanical energy (SME) were measured. Extrudate quality metrics, such as expansion ratio (ER), water absorption index (WAI), and water solubility index (WSI), were also measured. The pasting viscosities indicated that TSG inclusion increases viscosity but also makes the starch-gum paste more susceptible to permanent shear degradation. The thermal analysis indicated that TSG inclusion narrowed the melting endotherms and lowered the energy required for melting (p < 0.05) at higher inclusion levels. Extruder back pressure, motor torque, and SME decreased with increasing TSG levels (p < 0.05) as the TSG effectively lowered the melt viscosity at high usage rates. The ER reached a maximum of 3.73 with a 2.5% TSG level extruded at 150 rpm (p < 0.05). The WAI of extrudates increased with TSG inclusion rate at equivalent SSs, whereas WSI behaved oppositely (p < 0.05). Small inclusions of TSG can improve the expansion properties of starch, whereas larger inclusions result in a lubrication effect that mitigates the shear-induced depolymerization of starch. PRACTICAL APPLICATION: The impact of cold-water soluble hydrocolloids, including tamarind seed gum, on the extrusion process, is poorly understood. From this work, tamarind seed gum effectively modifies the viscoelastic and thermal characteristics of corn starch in a way that enhances the direct expansion characteristics of the starch during extrusion processing. The effect is more beneficial at lower gum inclusion levels as higher levels result in reduced capabilities to translate shear from the extruder into useful transformations of the starch polymers during processing. Small amounts of tamarind seed gum could be used to improve the quality of extruded starch puff snacks.


Subject(s)
Starch , Tamarindus , Starch/chemistry , Viscosity , Zea mays/chemistry , Seeds/chemistry , Colloids , Water/chemistry
3.
J Food Sci ; 88(2): 784-794, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36647678

ABSTRACT

The inclusion of cellulose nanocrystals (CNC) and microcrystalline cellulose (MCC) during extrusion processing of corn starch (CS) is presented in this study. Blends were prepared by incorporating CNC and MCC at different concentrations, 1%, 3%, 5%, and 10% w/w in CS. The crystallinity index (CrI) of CNC and MCC was determined using X-ray diffraction, and the chemical functionality of CNC, MCC, and CS was studied using Fourier transform infrared spectroscopy. The pasting properties of the blends were studied using Micro Visco-Amylo-Graph before extrusion. The blends were preconditioned to 18 ± 0.5% (w.b.) moisture and extruded using a twin-screw extruder at 200 and 250 rpm at 140°C. CS-CNC's expansion ratio (ER) values were 2.95 to 3.35 and 2.72 to 3.22 for MCC. CNC's CrI and particle size were significantly lower than MCC, allowing CNC-based extrudates to have ER values similar to the control even at high CNC concentration (≤10% w/w). This study demonstrated that fiber with particle size <100 µm can be added in direct-expanded product formulations at high concentrations without negatively influencing the extrudate texture while offering increased nutritional value. PRACTICAL APPLICATION: This study gives insight into the potential application of cellulose nanocrystals and microcrystalline cellulose in manufacturing direct-expanded extruded products, providing high fiber content without compromising the product quality. This knowledge could also be translated into manufacturing other food products such as breakfast cereals, pasta, and bread.


Subject(s)
Starch , Zea mays , Starch/chemistry , Particle Size , Cellulose/chemistry , X-Ray Diffraction
4.
J Food Sci ; 87(12): 5349-5362, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36382863

ABSTRACT

Ten novel breeding lines of quinoa (Chenopodium quinoa Willd) suitable to be grown in the Pacific Northwest of the United States were developed and utilized for extrusion processing. Understanding how a particular breeding line performs during food processing and which properties determine its performance can promote the use of quinoa as an ingredient in value-added products, such as extruded snacks. In this study, extrusion characteristics of the whole seed flours of the novel quinoa breeding lines were evaluated using a co-rotating twin-screw extruder at two temperatures (110°C and 125°C), three screw speeds (200, 350, and 500 rpm), and a moisture content of 18% (w.b.). The expansion ratio (ER) ranged from 1.15 to 2.33 and was negatively influenced by the fat content in the flours. Breeding line 11WAQ-104.88 (WAQ10) exhibited the greatest potential for use in direct expanded foods as it had the highest ER for all conditions studied. Strong correlations were found between ER and pasting properties of the flours, proving the usefulness of the pasting test for flour quality evaluation before extrusion processing. The results demonstrate the potential of using quinoa for producing direct expanded food products and highlight the importance of selecting specific breeding lines for desired product characteristics. PRACTICAL APPLICATION: This study provides the extrusion processing characteristics of 10 new quinoa breeding lines. Based on the information gained, it will be easier for the food industry, including breeders as well as processors, to select the right quinoa variety based on their requirements, and may further help to enhance the use of quinoa.


Subject(s)
Chenopodium quinoa , Plant Breeding , Flour/analysis , Food Handling/methods , Temperature
5.
J Food Sci ; 87(8): 3513-3527, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35822450

ABSTRACT

Due to their dense characteristics, direct-expanded products fortified with insoluble fiber are generally not well accepted. Understanding the interactions between starch and fiber could help to effectively choose and modify ingredients to produce products containing high amounts of fiber. Therefore, this study aims to explain the interplay between two starches (native and waxy corn) and two pomace types (blueberry and cranberry). Blends up to 100% of pomace were extruded using a co-rotating twin-screw extruder. Raw material and milled extrudates were analyzed for their pasting and hydration properties. Fourier-transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy were conducted to observe molecular changes. The expansion ratio (ER) significantly decreased as pomace was added and ranged from 3.85 for pure waxy corn starch to approximately 1 for blends that contained 80% pomace. Distinctions between the blends were observed. Particularly, at 20% of pomace inclusion, native corn starch with cranberry pomace showed a significantly higher ER. Different behaviors were also detected during the physicochemical analyses. A nonlinear trend between pomace level and water solubility as well as absorption was observed for native corn starch blends, suggesting that molecular interactions between the biopolymers occur. FTIR and NMR results give no evidence for new covalent bonds; hence, the most likely interactions occurring are hydrogen bonds. In addition to the dilution effect of pomace addition, the enhancement or weakening of such interactions between starch molecules by pomace compounds may reduce the ER.


Subject(s)
Starch , Vaccinium macrocarpon , Amylopectin/analysis , Dietary Fiber/analysis , Food Handling/methods , Fruit/chemistry , Plant Extracts/chemistry , Starch/chemistry , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...